
Computer-Aided Generation of N-shift RWS
Benjamin Edward Bolling 1

1 European Spallation Source ERIC
DOI: 10.21105/joss.03431

Software
• Review
• Repository
• Archive

Editor: Mark A. Jensen
Reviewers:

• @ShantanuDash
• @magedhelmy1

Submitted: 03 May 2021
Published: 19 February 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of Need
All around the world, research institutes and industrial complexes make use of workforces
working multiple shifts per day in order to utilise maximum efficiency and profitability of the
facility. Creating shift work schedules has, however, always been a challenging task, especially
such that are equal for all workers and at the same time distributes the shifts evenly and
properly to prevent staff burnout (Becker, 2020).

The purpose and aim of this package is to support research institutes and industrial complexes at
which non-standard working hours are applicable with a computational tool to create rotational
workforce schedules by providing the user (schedule-maker) with all possible schedules for a set
of input constraints/conditions (such as shift lengths, weekly working hours and -resting time)
by constructing and utilising a Combinatoric Generator and a Cartesian Product calculator.

Comparing to already available software that (by the developer/author) could be found, this
method uses a computational semi-automatic approach rather than the more traditional manual
creation of schedules. This computational approach is also able to check and identify every
combination that could satisfy the required rotational workforce schedule, if there are any that
fully satisfy the requirements. Hence, this application can be used as an aid for schedule-makers
by being either supplied with ready schedules or by schedules working as good starting points.
It can therefore also be considered as an attempt to implement a slightly different method,
which e.g. together with other shift scheduling methods may be combined to find more strategic
methods for building rotational shift workforce schedules.

Another approach and need of the application is to serve as a support function for creating
rotational shift workforce schedules for large-scale scientific research facilities such as particle
accelerators, at which the workforce size is many time very constrained. In those situations,
the creation of schedules can be very complex and difficult, making a tool such as this useful.
In other cases, it can be used to prove that the constraints are too tight and that these cannot
be fulfilled by any schedule, saving time for shift schedulers and hence also for the research
facility.

This package provides a graphical user interface (based on PyQt5 (Riverbank Computing
Limited, 2016)) tool for generating and constructing acceptable shift arrays if there are any
possible arrays following all user-defined constraints. These can be exported to the file formats
ODS, CSV, and txt, with the arrays ready to be used as they are or as templates for further
modifications (e.g. swapping shifts between workers and hence taking into account individual
workers’ needs).

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 1

https://orcid.org/0000-0002-6650-5365
https://doi.org/10.21105/joss.03431
https://github.com/openjournals/joss-reviews/issues/3431
https://github.com/benjaminbolling/RSW
https://doi.org/10.5281/zenodo.7618915
https://www.linkedin.com/in/fortinbras/
https://orcid.org/0000-0001-5215-101X
https://github.com/ShantanuDash
https://github.com/magedhelmy1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03431


Introduction
In order to achieve schedules for the workers that treats everyone equally, the focus of this
package is on so-called rotational workforce schedules (RWSs). Rotational workforce schedules
means that the schedule rotates after time, and hence, the other option would be static shift
schedules. In this project, the term ‘shift arrays’ is defined to represent all possible schedules
following a list of constraints, originating from e.g. country laws, organisational needs, and/or
workforce requests.

Computational Approach and Results
In this approach, each worker has the same schedule shifted by one week, resulting in that
all workers follow the same schedule. The project has been divided into two phases, Boolean
Shift Arrays (in which boolean shift arrays are generated) and From Boolean Shift Arrays to
a RWS (in which a selected boolean shift array is shaped into its final RWS layout). The
high-level software architecture flow and a user flowchart can be seen in Figure 4 and Figure 5,
respectively.

Boolean Shift Arrays (phase 1)

A boolean shift array is defined such that 1 means that the worker is working and 0 that the
worker is not. The input species (also known as constraints) and their respective values used
are shown in Table 1 below.

Table 1: Constraints, i.e. the variables and their meanings, and some example values.

Variable Meaning Value
𝑁 number of shifts per days 2
𝑛𝑐𝑓 number of days off clustered -
𝑛𝑆 number of shifts per shift cycle 18
𝑛𝑊 number of weeks to cycle over 4
𝑛𝑤𝑑 number of working days per week 7
𝑛𝑤𝑆 Number of workers per shift (minimum) 1
𝑡𝑑 daily minimum continuous resting time 11
𝑡𝑟 weekly minimum single continuous resting time 36
𝑡𝑠 shift lengths 8.33
𝑡𝑊 weekly working hours per worker 36.00

Since each week also resembles a worker, the shift array can be set up as a matrix with 7
columns (each representing the days of a week) and 𝑛𝑊/7 rows (each representing a worker).
The columns can then be summed to achieve the shift occupancy (or how many people are
working each shift). Thus, the phase1 algorithm only allows shift arrays to pass for which all
shifts are occupied by at least one worker, with a shift represented by the first 𝑛𝑤𝑑 days for
each week. In order to extend to not only use single shifts but also 2- or 3-shifts, a logical
condition was added into the algorithm: For 𝑁 shifts per day, each day has to be filled with at
least 𝑁 workers.

In order to avoid all working days from being clustered together, the constraint for weekly
minimum single continuous resting time is added (𝑡𝑟). The algorithm ensures that all passed
shift arrays have at least 𝑡𝑟 hours of free-time over any given 7-day period.

The number of shifts per shift array is, in this algorithm, calculated by

𝑛𝑆 = ceil(𝑡𝑊/𝑡𝑠) (1)

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 2

https://doi.org/10.21105/joss.03431


to have the reason for using ceiling function (and not the floor function) being the argument
that it is better with a couple of more hours than fewer. In order to cluster days off (𝑛𝑐𝑓), the
algorithm’s GUI has an optional additional constraint that serves this purpose and simply does
not allow shift arrays with zeroes in clusters less than this through.

By using the input 𝑛𝑊 ×𝑛𝑤𝑑 as the iterable and 𝑛𝑆 as the length of subsequences of elements
from the iterable, the same methodology as the combinations function of the itertools module
in Python (Python Software Foundation, 2020) (a combinatoric generator) is used for creating
each shift array. It can be simply described as creating an array of combinations (in this
case, zeroes and ones corresponding to a day off or shift work, respectively) with a specific
length (number of days in a cycle). By imposing the other inputs as constraints on whether a
shift array should be appended to accepted shift arrays, the reason for not using the built-in
Python module becomes clear: Python’s built-in module returns all array combinations that
are possible without any imposed constraints, which quickly escalates to becoming too large
for a personal computer’s internal memory to handle.

With this, the final result is an array of shift arrays in which each shift array is filled with 7𝑛𝑆
ones and 𝑛𝑊(7 − 𝑛𝑆) zeroes whilst obeying the above mentioned constraints.

As there are (𝑛𝑟) ways to choose r elements from a set of n elements, the number of possible
combinations (𝐶) can be expressed by using the factorial of the binomial coefficient:

𝐶 = 𝑛!
𝑟! × (𝑛 − 𝑟)!

. (2)

with 𝑛 being the number of days in total in a shift cycle and 𝑟 being the number of working
days per worker in the shift cycle.

Translating this into the variables defined in Table 1 yields the total number of combinations
(without constraints), which is hence also the maximum number of accepted combinations:

𝐶 = 𝑛𝑊 × 𝑛𝑤𝑑!
𝑛𝑆!(𝑛𝑊 × 𝑛𝑤𝑑 − 𝑛𝑆!)

. (3)

From Boolean Shift Arrays to RWS (phase 2)

In this phase, a new list of combinations with free days clustered in pairs has been generated
and a combination selected to proceed with (combination 212 as it has two out of four weekends
off (note the zeroes in the bottom table in Figure 2 to the right).

Pressing the Find solutions results in what is shown in Figure 3 (right figure). A schedule
can also be constructed completely by hand, but note that the algorithm will find all possible
combinations that obey the given constraints. The algorithm is a Cartesian Product calculator,
in which each set is a list of shifts (1 = Day, 2 = Evening, etc.) with one set per working day:

combinations = ⎛⎜
⎝

1
2
⋮
⎞⎟
⎠

×⎛⎜
⎝

1
2
⋮
⎞⎟
⎠

×…×⎛⎜
⎝

1
2
⋮
⎞⎟
⎠

=
𝑛𝑤𝑑

∏
𝑖=1

⎛⎜
⎝

1
2
⋮
⎞⎟
⎠𝑖

=

⎧{{{
⎨{{{⎩

[1 1 … 1]
[1 1 … 2]
⋮
[2 2 … 1]
[2 2 … 2]

(4)

where each array in the resulting product is considered as a possible shift schedule matrix.
Imposing constraints (resting time between shifts and ensuring all shifts are filled) on each
combinations results in solutions from which the user can choose between.

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 3

https://doi.org/10.21105/joss.03431


Since all combinations are stored in a matrix form before different combinations are removed
from the final solutions matrix, large datasets require severe amount of internal memory for the
Cartesian Product method to work. For this, a controlling script has been implemented which
calculates a pre-estimate of required internal memory. Approximating that each character in
the shiftarray takes up 8 byte of memory yields

𝐼𝑀 ≈  𝑁𝑠𝑖𝑧𝑒 = 𝑁𝑛𝑆 × 𝑛𝑆, (5)

where 𝑁𝑠𝑖𝑧𝑒 is the total number of zeroes and ones in the full matrix. If the estimated size
of the resulting matrix from the operation exceeds 1Gb, the user is prompted whether to
continue with the default Cartesian Product method or to use a less internal memory demanding
recursive method.

Comparison to similar softwares
Different commercial softwares are available for shift scheduling using computational methods.
In 2004, Burke (2004) made a comprehensive literature review of a wide range of approaches,
including optimising approaches (mathematical programming), multi-criteria approaches (goal
programming), artificial intelligence methods, heuristic approaches, and metaheuristic ap-
proaches. Common for these approaches is that they use the constraints by the user and
are able to provide more-or-less ready schedule(s), with the limitations for the mathematical
approaches not being appropriate and requiring post-generation work. Goal programming
defines a target for each criterion and their relative priorities Burke (2004) by applying mathe-
matical programming or by tackling metaheuristics within a multi-objective framework. The
complexities from goal programming arise from that real world problems are difficult to solve
without some optimisation from a planner.

Many approaches utilising artificial intelligence imitate human reasoning and may hence produce
reasonable schedules, such as Petrovic & Berghe (2002) which takes into account parameters
such as the appropriate skill mix and staff-to-patient ratios.

Laporte & Pesant (2004) developed a constraint programming algorithm for the construction of
rotating shift schedules with the algorithm building the schedules per column (per day), looking
for allowed shift stretches (including days off). The pros of their method over this project is
that the required computing power is lower than in this project as the shift patterns. However,
the method populates the shift schedules with the shift species and does not allow the user to
perform the middle step from this project, which is selecting the shift- and rest-day-patterns
(referred to as a combination). Therefore, the cons of their algorithm in comparison to this
would be that the number of solutions could be very high and require a large amount of
computer storage. Moreover, their method had difficulties to obtain evenly spaced full weekends
off, which the shift pattern scroll tool in this project can be utilised for finding (see bottom of
Figure 2).

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 4

https://doi.org/10.21105/joss.03431


Conclusions
In this project, an algorithm has been constructed which generate schedules for different
number of weeks to cycle over. The current issue is that the computational complexity (and
hence the required computation time) increases with the number of weeks per cycle (see Table
2 and in Figure 1 in benchmarking). This means that for a higher amount of weeks in a shift
cycle, this application will need further development in order to have more efficient ways of
finding the solutions and/or deployment of the application onto super-computers for generating
the Boolean Arrays.

For up to 5 weeks in a shift cycle it is possible to use a general-purpose computer such as the
benchmarking Apple MacBook Pro with specifications defined in Table 1 in benchmarking.
It has thus been demonstrated that the application can be used to generate 1, 2 and 3-shift
schedules. The software in this project has also been compared to a few existing methods via
a short literature study, showing that it offers both benefits and disadvantages.

Future development plans include adding functionalities in phase 1 such as filtering on number
of free weekends and taking into account competences of the shift workers (to ensure full
coverage of potential shift competence requirements). An important future development
needed is restructuring part of the algorithm to lower the required processing power and hence
time needed. Another future development plan includes importing an existing schedule with
labels as a CSV-file directly into phase 2 such that modifications and/or checks can be done to
assure the schedule is compliant with local rules for the workers. These improvements would
further strengthen the usability of this application.

Figures

Figure 1: The RWSing Application’s launcher.

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 5

https://github.com/benjaminbolling/RSW/blob/master/docs/benchmarking.md
https://github.com/benjaminbolling/RSW/blob/master/docs/benchmarking.md
https://doi.org/10.21105/joss.03431


Figure 2: The RWSing Application’s algorithm’s “phase 1 GUI”, in which the combinations have been
generated.

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 6

https://doi.org/10.21105/joss.03431


Figure 3: The RWSing Application’s algorithm’s “phase 2 GUI” as launched from the “phase 1 GUI” and
with the second Thursday’s shift changed to an evening shift (left) and after finding solutions, showing
the first solution (right).

Figure 4: The RWSing Application’s high-level software architecture flow.

Figure 5: The RWSing Application’s high-level user flowchart.

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 7

https://doi.org/10.21105/joss.03431


Acknowledgements
The author wants to thank his direct line-manager at European Spallation Source for asking
the question if it would be possible to create a software for generating shift schedules, which
lead to the idea of creating this project and after a while lead to this final state. The author
also wants to thank the reviewers for taking their time reviewing this project.

References
Becker, T. (2020). A decomposition heuristic for rotational workforce scheduling. Journal of

Scheduling, 23, 539–554. https://doi.org/10.1007/s10951-020-00659-2

Burke, D. C., E. (2004). The state of the art of nurse rostering. Journal of Scheduling, 7(6),
441–499. https://doi.org/10.1023/B:JOSH.0000046076.75950.0b

Laporte, G., & Pesant, G. (2004). A general multi-shift scheduling system. The Journal of
the Operational Research Society, 55, 1208–1217. https://doi.org/10.1057/palgrave.jors.
2601789

Petrovic, G. B., S., & Berghe, G. V. (2002). Storing and adapting repair experiences in
personnel rostering. Practice and Theory of Automated Timetabling, Fourth International
Conference, 185–186.

Python Software Foundation. (2020). Python Language Reference (Version 3.8.2). https:
//doi.org/10.1201/9781584889304-33

Riverbank Computing Limited. (2016). PyQt5: Python bindings for the Qt cross platform UI
and application toolkit. https://www.riverbankcomputing.com/software/pyqt/

Bolling. (2023). Computer-Aided Generation of N-shift RWS. Journal of Open Source Software, 8(82), 3431. https://doi.org/10.21105/joss.03431. 8

https://doi.org/10.1007/s10951-020-00659-2
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1057/palgrave.jors.2601789
https://doi.org/10.1057/palgrave.jors.2601789
https://doi.org/10.1201/9781584889304-33
https://doi.org/10.1201/9781584889304-33
https://www.riverbankcomputing.com/software/pyqt/
https://doi.org/10.21105/joss.03431

	Statement of Need
	Introduction
	Computational Approach and Results
	Boolean Shift Arrays (phase 1)
	From Boolean Shift Arrays to RWS (phase 2)

	Comparison to similar softwares
	Conclusions
	Figures
	Acknowledgements
	References


