caracas: Computer algebra in R

Mikkel Meyer Andersen1 and Søren Højsgaard1

1 Department of Mathematical Sciences, Aalborg University, Denmark

Summary
caracas is an R (R Core Team, 2018) package that enables a computer algebra system (CAS) within R via the open source Python CAS SymPy (Meurer et al., 2017), which is made possible via reticulate (Ushey et al., 2020). caracas is published at The Comprehensive R Archive Network (CRAN) (R Core Team, 2018) at https://cran.r-project.org/package=caracas, its source is available at https://github.com/r-cas/caracas and the documentation is available at https://r-cas.github.io/caracas/

Much work went into integrating caracas into R such that caracas behaves much like other R libraries and objects.

caracas contains a number of vignettes demonstrating both basic functionality like solving equations as well as more advanced tasks like finding the concentration and covariance matrix in a dynamic linear model.

Compared to other CAS R packages like Ryacas (Andersen & Højsgaard, 2019) based on yacas (A. Pinkus et al., 2016; A. Z. Pinkus & Winitzki, 2002), caracas is more feature complete, for example with respect to solving equations.

Statement of Need

From a statistician’s perspective, R is excellent for data handling, graphics, for model fitting and statistical inference and as a programming environment. However, R largely lacks the ability to perform symbolic computations. That is, R only supports to a small extent the step from posing a problem (for example a model) in mathematical terms over symbolic manipulations of the model and further onto a stage where a model can be combined with data. The caracas provides capabilities for these steps directly in R. Topics that can be handled in caracas include:

- Sums,
- limits,
- integration,
- differentiation,
- symbolic matrices and vectors,
- simplification of mathematical expressions and
- outputting in TeX format.

Several (commercial) systems are available for such tasks (and many more), e.g. Mathematica (Wolfram Research, Inc., 2021) and Maple (Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, 2021). However, we will argue that there is a virtue in being able to handle such tasks directly from within R using the familiar R syntax. Moreover, it is an integrated part of the design of caracas that it is straightforward to coerce a mathematical object into an R expression which can, e.g., be evaluated numerically.
Acknowledgements

We would like to thank the R Consortium for financial support for creating the caracas package (link to details on the funded project) and to users for pinpointing points that can be improved in caracas.

References


