
Nominally: A Name Parser for Record Linkage
Matthew VanEseltine1

1 Institute for Social Research, University of Michigan
DOI: 10.21105/joss.03440

Software
• Review
• Repository
• Archive

Editor: Mark A. Jensen
Reviewers:

• @sara-02
• @sap218

Submitted: 19 May 2021
Published: 12 October 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

With ever greater data availability, the importance of successfully connecting people across
disparate datasets grows. As we link records from multiple sources, we would like to identify
and measure similarities of names such as “Matthew VanEseltine” in one database, “Matt Van
Eseltine” in another, and “Vaneseltine, M PhD” in a third. Nominally assists in initial stages
of record linkage, where datasets are cleaned and preprocessed, by simplifying and parsing
single-string personal names into six core fields: title, first, middle, last, suffix, and nickname.

Statement of Need

Nominally is a user-friendly Python package designed to parse large lists of names. It is
independent of any specific data science framework and requires minimal dependencies. The
nominally API provides simple command-line, function, and class access and easily integrates
with the pandas (McKinney, 2010) data analysis library. The aim is to parse thousands or
millions of strings into name parts for record linkage that maintain relevant features while
excluding irrelevant details.
Human names can be difficult to work with in data. Varying quality and practices across
institutions and datasets introduce noise and cause misrepresentation, increasing linkage and
deduplication challenges. Common errors and discrepancies include (and this list is by no
means exhaustive):

• Arbitrarily split first and middle names.
• Misplaced prefixes of last names such as “van” and “de la.”
• Multiple last names partitioned into middle name fields.
• Titles and suffixes variously recorded in different fields, with or without separators.
• Inconsistent capture of accents, the ‘okina, and other non-ASCII characters.
• Single name fields arbitrarily concatenating name parts.

Cumulative variations and errors can combine to make the seemingly straightforward job of
simply identifying first and last names rather difficult. Nominally is designed to consistently
extract key features of personal names using a rule-based system (Christen, 2012). No prior
differentiation is assumed between name fields; that is, nominally operates under the least
informative case where only a single string name field is available. Nominally aggressively
cleans input; scrapes titles, nicknames, and suffixes; and parses apart first, middle, and last
names.
In its simplest application, nominally parses one name string into a dictionary of segmented
name fields:

VanEseltine, M., (2021). Nominally: A Name Parser for Record Linkage. Journal of Open Source Software, 6(66), 3440. https://doi.org/10.
21105/joss.03440

1

https://doi.org/10.21105/joss.03440
https://github.com/openjournals/joss-reviews/issues/3440
https://github.com/vaneseltine/nominally
https://doi.org/10.5281/zenodo.5562628
https://www.linkedin.com/in/fortinbras/
https://github.com/sara-02
https://github.com/sap218
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03440
https://doi.org/10.21105/joss.03440


>>> from nominally import parse_name
>>> parse_name("Vimes, jr, Mr. Samuel 'Sam'")
{

'title': 'mr',
'first': 'samuel',
'middle': '',
'last': 'vimes',
'suffix': 'jr',
'nickname': 'sam'

}

Possible combinations of name parts are too extensive to itemize, but as a further example
nominally extracts appropriate and comparable fields from these divergent presentations of
a single name:

Input Title First Middle Last Suffix Nickname
S.T. VIMES JUNIOR s t vimes jr
Vimes, Samuel T. samuel t vimes
samüél t vimés samuel t vimes
Samuel “sam” Thomas Vimes samuel thomas vimes sam
Dr. Samuel Thomas Vimes, Ph.D. dr samuel thomas vimes phd
Samuel T. Vimes, Jr. 24601 samuel t vimes jr
vimes, jr. phd, samuel samuel vimes jr phd

Nominally is designed for large-scale work. We employ nominally as part of record linkage
in building the UMETRICS data at the Institute for Research on Innovation & Science (IRIS,
2020), which involves processing millions of name records of university employees, principal
investigators, and published authors.

Comparisons with Existing Software

Multiple open-source Python packages focus on parsing names, including python-namepars
er (Gulbranson, 2020), probablepeople (DataMade, 2019), and name-cleaver (Sunlight
Labs, 2013). Nominally improves upon these packages in its core use case: parsing single
human names of Western name order (first middle last). Nominally began from a fork of pyth
on-nameparser, initially aiming to refactor code and improve certain test cases. Development
continued through a complete overhaul, and nominally now accurately handles a greater
range of names without requiring user customization. Probablepeople and name-cleaver
both cast a wider net, simultaneously addressing capture of multiple names, politicians, or
companies. By narrowing the scope to single human names, nominally loses the broader
applications of these packages but gains accuracy in its core capacity.
Large-scale data systems tend to impose a great many assumptions about the form and
features of human names (McKenzie, 2010). As part of linking such systems together, nom
inally necessarily works within some such assumptions. Nominally does not attempt to
identify a correct or ideal name, but rather to generate useful features of names using Western
name order. Not all names can be accurately captured, and not all errors can be corrected,
but many variations can be productively aligned.

VanEseltine, M., (2021). Nominally: A Name Parser for Record Linkage. Journal of Open Source Software, 6(66), 3440. https://doi.org/10.
21105/joss.03440

2

https://doi.org/10.21105/joss.03440
https://doi.org/10.21105/joss.03440


Acknowledgements

Special thanks go to IRIS staff at the University of Michigan, who have run nominally at
scale, provided feedback, and reported bugs. Nominally is indebted to the foundation of the
python-nameparser project; its base of tests and name lists have been especially helpful
throughout nominally’s development.

References

Christen, P. (2012). Data pre-processing. In Data matching: Concepts and techniques for
record linkage, entity resolution, and duplicate detection (pp. 39–67). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-31164-2_3

DataMade. (2019). Probablepeople. In GitHub repository. https://github.com/datamade/
probablepeople; GitHub.

Gulbranson, D. (2020). Python-nameparser. In GitHub repository. https://github.com/
derek73/python-nameparser; GitHub.

IRIS. (2020). IRIS UMETRICS 2020 linkage files. https://doi.org/10.21987/70kd-x544
McKenzie, P. (2010). Falsehoods programmers believe about names. https://www.

kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
McKinney, W. (2010). Data structures for statistical computing in python. In S. van der Walt

& J. Millman (Eds.), Proceedings of the 9th python in science conference (pp. 56–61).
https://doi.org/10.25080/Majora-92bf1922-00a

Sunlight Labs. (2013). Name-cleaver. In GitHub repository. https://github.com/
sunlightlabs/name-cleaver; GitHub.

VanEseltine, M., (2021). Nominally: A Name Parser for Record Linkage. Journal of Open Source Software, 6(66), 3440. https://doi.org/10.
21105/joss.03440

3

https://doi.org/10.1007/978-3-642-31164-2_3
https://github.com/datamade/probablepeople
https://github.com/datamade/probablepeople
https://github.com/derek73/python-nameparser
https://github.com/derek73/python-nameparser
https://doi.org/10.21987/70kd-x544
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://doi.org/10.25080/Majora-92bf1922-00a
https://github.com/sunlightlabs/name-cleaver
https://github.com/sunlightlabs/name-cleaver
https://doi.org/10.21105/joss.03440
https://doi.org/10.21105/joss.03440

	Summary
	Statement of Need
	Comparisons with Existing Software
	Acknowledgements
	References

