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Summary

SummationByPartsOperators.jl is a Julia library of summation-by-parts (SBP) operators,
which are discrete derivative operators developed to get provably stable (semi-) discretizations,
paying special attention to boundary conditions. Discretizations included in this framework
are finite difference, Fourier pseudospectral, continuous Galerkin, and discontinuous Galerkin
methods. The main aim of SummationByPartsOperators.jl is to be useful for both students
learning the basic concepts and researchers developing new numerical algorithms based on
SBP operators. Therefore, SummationByPartsOperators.jl provides a unified framework of
all of these seemingly different discretizations. At the same time, the implementation is
reasonably optimized to achieve good performance without sacrificing flexibility.

Statement of need

Partial differential equations (PDEs) are widely used in science and engineering to create math-
ematical models of real-world processes. Since PDEs often need to be solved numerically, a
vast amount of numerical methods has been developed. Since it is impossible to keep up with
all recent research, sub-communities focussing on specific applications or numerical methods
emerged. Sometimes, these communities develop different vocabulary and notations, making
it hard for newcomers (or even experienced researchers) to see similarities and connections
between seemingly unrelated approaches. To transfer new ideas and developments and knowl-
edge from one community to another, common abstractions can be helpful. The concept of
SBP operators is such an abstraction. In recent years, SBP operators have attracted a lot of
attention, in particular for PDEs modeling advection-dominated problems, where they enabled
the construction of energy- or entropy-stable numerical methods, including finite difference,
discontinuous Galerkin, continuous Galerkin, and (pseudo-) spectral methods. Their success is
based on mimetic properties which enable the transfer of results obtained for differential equa-
tions at the continuous level to the discrete level. In particular, SBP operators are designed
to mimic integration-by-parts discretely as summation-by-parts, enabling discrete analogues
of energy/entropy methods for PDEs.
SummationByPartsOperators.jl is written entirely in Julia (Bezanson et al., 2017). Making
use of multiple dispatch and generic types, SummationByPartsOperators.jl provides a unified
interface for different SBP operators. At the same time, the implementations are reasonably
fast (again, due to multiple dispatch and specialized implementations for each operator class).
Together, this facilitates the development of new algorithms and research in numerical analysis,
which is the primary goal of this package. In addition, SummationByPartsOperators.jl has
been used in a number of graduate-level numerical analysis courses, allowing students to
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understand the connections between different SBP methods by presenting them in a unified
framework. In addition, some of the operators were not available in open source software
previously (to the best of the author’s knowledge).

Features

SummationByPartsOperators.jl implements numerical methods based on SBP operators of the
following classes:

• finite difference methods
• Fourier collocation methods
• continuous Galerkin methods
• discontinuous Galerkin methods

Since a discrete derivative operator is a linear operator, all of these SBP operators implement
the basic interface of such linear operators (AbstractMatrix in Julia) such as multiplica-
tion by vectors and addition of operators. Finite difference and Fourier operators on periodic
domains also allow the construction of rational functions of operators and their efficient im-
plementation using the fast Fourier transform (Frigo & Johnson, 2005).
In addition to basic SBP derivative operators, SummationByPartsOperators.jl contains a num-
ber of related operators, such as

• SBP artificial dissipation operators
• spectral viscosity operators for Fourier methods
• modal filter operators for Fourier methods and Legendre pseudospectral methods

Using Julia’s rich type system, all of these operators are implemented as their own types. This
enables several optimizations such as a memory requirement independent of the number of
grid points. In contrast, implementations based on sparse/banded matrices have a memory
requirement growing linearly with the number of grid points. In addition, the structure of the
operators can be taken into account for operator-vector multiplications, usually resulting in
speed-ups of an order of magnitude or more on consumer hardware. For example, the appli-
cation an optimized the sixth-order (in the interior) finite difference SBP operator (Almquist,
2017) on a grid with 1000 nodes takes roughly 330 ns on a consumer CPU from 2017 (Intel®
Core™ i7-8700K) using version v0.5.5 of SummationByPartsOperators.jl. In contrast, the
same operation takes roughly 3.9 microseconds using a sparse matrix format used in other
implementations of this operator (Almquist, 2017). This benchmark is based on the following
code, which also provides a very basic example of SummationByPartsOperators.jl.

# install the package if necessary
using Pkg; Pkg.add("SummationByPartsOperators")

# load the package
using SummationByPartsOperators

# create a finite difference SBP operator
D = derivative_operator(MattssonAlmquistVanDerWeide2018Accurate(),
derivative_order=1, accuracy_order=6,
xmin=0.0, xmax=1.0, N=10^3

)
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# evaluate the function `sinpi` on the discrete grid
x = grid(D); u = sinpi.(x)

# use `D` to approximate the derivative of `u`
du = D * u

# compute the discrete L² error of the approximation
integrate(u -> u^2, du - pi * cospi.(x), D) |> sqrt

The output of the last command will be a relatively small number on the order of 4.2e-13.
Following good software development practices, SummationByPartsOperators.jl makes use of
continuous integration and automated tests required before merging pull requests. Documen-
tation is provided in form of docstrings, a general introduction, and tutorials. In addition,
SummationByPartsOperators.jl is a registered Julia package and can be installed using the
built-in package manager, handling dependencies and version requirements automatically.

Related research and software

There are of course many open-source software packages providing discretizations of differ-
ential equations. However, many of them focus on a single class of numerical methods or a
specific application, e.g.,

• finite difference methods (DiffEqOperators.jl, a part of DifferentialEquations.jl (Rack-
auckas & Nie, 2017))

• finite volume methods (Oceananigans.jl (Ramadhan et al., 2020), Kinetic.jl (Xiao,
2021))

• spectral methods (ApproxFun.jl (Olver & Townsend, 2014), FourierFlows.jl (Constanti-
nou & Wagner, 2021))

• finite element methods (Gridap.jl (Badia & Verdugo, 2020))
• discontinuous spectral element methods (Trixi.jl (Ranocha, Schlottke-Lakemper, et al.,

2021; Schlottke-Lakemper et al., 2021, 2020))

We are not aware of any open-source software library implementing all of the SBP classes using
a unified interface or even several finite difference SBP operators on finite domains, which
are usually heavily optimized (Mattsson et al., 2014, 2018) and not available in other open
source packages. Sometimes, restricted sets of coefficients are available online (Almquist,
2017; O’Reilly, 2019), but there is no other extensive collection of these methods.
Of course, there is a plethora of additional open source software implementing numerical
methods for PDEs and each package has its own design criteria and goals. SummationBy-
PartsOperators.jl provides a unified interface of different SBP operators. Thus, there is a
partial overlap with some of the packages mentioned above such as finite difference operators
on periodic domains (DiffEqOperators.jl, but with a different handling of bounded domains)
or Fourier methods on periodic domains (ApproxFun.jl, but with a different interface and
extensions). In addition, many packages focus on a specific application such as some spe-
cific fluid models (Oceananigans.jl, FourierFlows.jl) or hyperbolic PDEs (Trixi.jl). In contrast,
SummationByPartsOperators.jl focuses on the numerical methods and provides them in a form
usable for rather general PDEs. For example, there is ongoing work to use the basic operators
provided by SummationByPartsOperators.jl in Trixi.jl.
Some of the research projects that have made use of SummationByPartsOperators.jl (most of
which have led to its further development) include numerical analysis of and algorithms for
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• nonlinear dispersive wave equations (Ranocha, Mitsotakis, et al., 2021; Ranocha,
Quezada de Luna, et al., 2021)

• hyperbolic conservation laws (LeFloch & Ranocha, 2021; Öffner & Ranocha, 2019;
Ranocha & Gassner, 2021)

• ordinary differential equations (Ranocha, 2021; Ranocha & Ketcheson, 2020; Ranocha
& Nordström, 2021)

• Helmholtz Hodge decomposition and analysis of plasma waves (Ranocha et al., 2020)
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