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Summary

Neural networks have been shown to have the ability to solve differential equations
(Chakraverty & Mall, 2017; Yadav et al., 2015). nnde is a pure-Python package for the
solution of ordinary and partial differential equations of up to second order. We present the
results of sample runs showing the effectiveness of the software in solving the two-dimensional
diffusion problem.

Statement of need

The nnde package provides a pure-Python implementation of one of the earliest approaches to
using neural networks to solve differential equations - the trial function method (Lagaris et al.,
1998). The nnde package was initially developed as a vehicle for understanding the internal
workings of feedforward neural networks, without the constraints imposed by an existing neural
network framework. It has since been enhanced to provide the capability to solve differential
equations of scientific interest, such as the diffusion equation described here. The ultimate
goal of the package is to provide the capability to solve systems of coupled partial differential
equations, such as the equations of magnetohydrodynamics.
Development of the nnde package began before the widespread adoption of modern neu-
ral network software frameworks. In the Python ecosystem, the most popular packages are
TensorFlow (https://tensorflow.org) and PyTorch (https://pytorch.org). These
frameworks are designed to be application-neutral - they can be used to develop neural net-
works with arbitrary architectures for arbitrary learning objectives. The primary advantages
of these frameworks are autodifferentiation and distributed computing. By recording the
sequence of mathematical operations performed in the forward pass through the network, au-
todifferentiation can automatically compute the gradients of the loss function with respect to
each of the network parameters, as well as the network inputs. The latter capability is central
to solving differential equations. Autodifferentiation also greatly reduces the volume of code
that must be developed to solve a given problem. The distributed computing capability allows
a network to take advantage of GPU-enabled hardware, and multiple compute nodes, to speed
the calculation, with little or no code changes required. The nnde package uses a more direct
method - precomputed derivative functions for the components of the differential equations
of interest and the trial solution. This code is typically faster than TensorFlow or PyTorch,
but requires more hand-crafted code to solve a given problem.
The most commonly used methods for solving differential equations are the Finite Element
Method (FEM) and Finite Difference Method (FDM). However, these methods can be difficult
to parallelize due to the need for communication between computational elements at the
boundaries of the allocated subgrids. These models can also have large storage requirements
for model outputs. The neural network method is straightforward to parallelize due to the

Winter et al., (2022). nnde: A Python package for solving differential equations using neural networks. Journal of Open Source Software,
7(70), 3465. https://doi.org/10.21105/joss.03465

1

https://doi.org/10.21105/joss.03465
https://github.com/openjournals/joss-reviews/issues/3465
https://github.com/elwinter/nnde
https://doi.org/10.5281/zenodo.5879387
http://www.diehlpk.de
https://github.com/taless474
https://github.com/hayesall
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03465


independent characteristics of the computational nodes in each network layer. Additionally,
the trained network solution is more compact than an FDM or FEM solution because storage
of only the network weights and biases is required. The neural network solution is mesh-
free and does not require interpolation to retrieve the solution at a non-grid point, as is the
case with FDM or FEM. Once the network is trained, computing a solution at any spatial or
temporal scale requires only a series of matrix multiplications, one per network layer. The
trained solution is a sum of arbitrary differentiable basis functions, and therefore the trained
solution is also differentiable, which is particularly useful when computing derived quantities
such as gradients and fluxes. This approach has led to several different classes of methods
for solving ODEs and PDEs with neural networks. The recent surge in interest in “physics-
informed neural networks” (Raissi et al., 2019) is an indication of the dynamic nature of the
field.

Description

nnde implements a version of the trial function algorithm described by Lagaris et al. (1998).
This software also incorporates a modification of the trial function algorithm to automatically
incorporate arbitrary Dirichlet boundary conditions of the problem directly into the neural
network solution.
As a concrete example of the sort of problem that can be solved using nnde, consider the
diffusion equation in two dimensions:

∂ψ

∂t
−D

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
= 0

With all boundaries fixed at 0 and with an initial condition of

ψ(x, y, 0) = sin(πx) sin(πy)

the analytical solution is

ψa(x, y, t) = e−2π2Dt sin(πx) sin(πy)

The nnde package was used to create a neural network with a single hidden layer and 10
hidden nodes and trained to solve this problem. The error in the trained solution for the case
of D = 0.1 is shown as a function of time in Figure 1.
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Figure 1: Difference between the trained neural network solution ψt(x, y, t) and the analytical solution
ψa(x, y, t) of the diffusion problem in 2 spatial dimensions using nnde with 10 nodes.

Software repository

The nnde software is available at https://github.com/elwinter/nnde.
A collection of example python scripts using nnde is available at https://github.com/elwinter/
nnde_demos.
A collection of example Jupyter notebooks using nnde is available at https://github.com/
elwinter/nnde_notebooks.
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