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Statement of Need

Nonlinear dynamical systems are ubiquitous in natural and engineering sciences, such as fluid
mechanics, theoretical chemistry, ship dynamics, rigid body dynamics, atomic physics, solid
mechanics, condensed matter physics, mathematical biology, oceanography, meteorology, and
celestial mechanics (Wiggins, 1994 and references therein). There have been many advances
in understanding phenomena across these disciplines using the geometric viewpoint of the
solutions and the underlying structures in the phase space, for example MacKay et al. (1984),
V. Rom-Kedar et al. (1990), Ozorio de Almeida et al. (1990), V. Rom-Kedar & Wiggins
(1990), J. D. Meiss (1992), Koon et al. (2000), Waalkens et al. (2005), J. D. Meiss (2015),
Wiggins (2016), Zhong et al. (2018), Zhong & Ross (2020). Chief among these phase
space structures are the invariant manifolds that form a barrier between dynamically distinct
solutions. In most nonlinear systems, the invariant manifolds are computed using numerical
techniques that rely on some form of linearization around equilibrium points followed by
continuation and globalization. However, these methods become computationally expensive
and challenging when applied to the high-dimensional phase space of vector fields defined
analytically, from numerical simulations or experimental data. This points to the need for
techniques that can be paired with trajectory calculations, without the excessive computational
overhead, and that at the same time can allow visualization along with trajectory data. The
Python package LDDS serves this need for analyzing deterministic and stochastic, continuous
and discrete high-dimensional nonlinear dynamical systems described either by an analytical
vector field or from data obtained from numerical simulations or experiments.

To the best of our knowledge, no other open-source software exists for computing Lagrangian
descriptors. However, a variety of computational tools are available for obtaining phase space
structures in fluid mechanics, such as the identification of Lagrangian coherent structures
via finite-time Lyapunov exponents (Briol & d'Ovidio (2011), Nelson & Jacobs (2016), Onu
et al. (2015), Finn & Apte (2013), Dabiri Lab (2009), Haller et al. (2020)), finite-size
Lyapunov exponents (Briol & d'Ovidio (2011)), and Eulerian coherent structures (Katsanoulis
& Haller (2018)). Our goal with this software is to make Lagrangian descriptors available
to the wider scientific community and enable the use of this method for reproducible and
replicable computational dynamical systems.

Summary and Functionalities

The LDDS software is a Python-based module that provides the user with the capability of
analyzing the phase space structures of both continuous and discrete nonlinear dynamical
systems in the deterministic and stochastic settings using Lagrangian descriptors (LDs). The
main idea of this method is to define a scalar valued functional called Lagrangian descriptor
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as the integral of a non-negative function g(x(t);xo) that encodes a dynamical property of a
trajectory at the initial condition, xq. Different formulations of the Lagrangian descriptor exist
in the literature where the non-negative function g(x(t); %) is given by: the arclength of a
trajectory in phase space (Jiménez Madrid & Mancho (2009), Mancho et al. (2013)), the ar-
clength of a trajectory projected on the configuration space (Craven & Hernandez (2015)), the
p-norm or p-quasinorm (Lopesino et al. (2017)), and the Maupertuis' action of Hamiltonian
mechanics (Montoya & Wiggins (2020)). The approach provided by Lagrangian descriptors
for revealing phase space structure has also been adapted to address discrete-time systems
(maps) and stochastic systems.

Briefly, for a continuous-time dynamical system:

dx

— =f(x(t),t 1

= £ (x(0),1) M
where x € R™ and f is the vector field, starting from an initial condition x¢ = x(#o) at time
t =tg, g(x(t);xo) is integrated along with the trajectory in forward and backward time over
the interval [ty — 7,to + 7], respectively, to obtain the Lagrangian descriptor,

to+T1

L (x0,t0,7) = / g(x(t); xg) dt. 2

to—T

at the initial condition. When this computation is performed for a 2D grid of initial conditions
over a long enough integration time interval and the corresponding contour map is visualized,
one can detect phase space structures at the points with extremum LD values that also have
a singularity (non-differentiability) (Lopesino et al. (2017), Naik et al. (2019)).

This open-source software incorporates the following features:

= Computation of LDs for two dimensional maps.

= Computation of LDs for two dimensional continuous-time dynamical systems.

= Computation of LDs for two dimensional stochastic differential equations with additive
noise.

= Computation of LDs on two-dimensional sections of Hamiltonian systems with 2 or more
degrees of freedom (DoF).

= Computation of LDs for 2 DoF Hamiltonian systems where the potential energy surface
is known on a grid of points in the configuration space of a chemcial reaction.

= Computation of LDs from a spatio-temporal discretization of a two-dimensional time-
dependent vector field.

= Numerical gradient based identification of the invariant stable and unstable manifolds
from the LD contour map.

= Addition of time-dependent external forcings in two-dimensional continuous dynamical
systems.

= Different formulations of the Lagrangian descriptor available in the literature.

All the features of the package and their usage across different settings are illustrated using
Jupyter notebooks as hands-on tutorials. These tutorials are meant to be worked through to
understand how to set up a model dynamical system to which LDs is applied and use different
options for visualizing the computational results. We believe that these notebooks are effective
in integrating this method into classroom courses, independent study, and research projects.
Moreover, the tutorials will encourage future contributions from the scientific community to
expand the features and application of the Lagrangian descriptor method in other areas of
computational science and engineering.
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Example systems

To illustrate the use of this software, we have applied the method to some of the benchmark
dynamical systems. These are included as examples:

Maps:
= Standard map

The standard map is a two-dimensional map used in dynamical systems to study a number of
physical systems such as the cyclotron particle accelerator or a kicked rotor (Chirikov (1971),
J. D. Meiss (1992), J. D. Meiss (2008)). The equations of the discrete system are given by
the expressions:

K .
Tpy1 = Tp + Yp — 5= sin(27z,)
m

o (3)
Yntl = Yn — o sin(27a,,)

where K is the parameter that controls the forcing strength of the perturbation. The inverse
map is described by:

Tn = Tn+1 — Yn+1
(4)

K .
Yn = Yn+1 + - Sin(27(Tn41 — Ynt1))

In the following figure, we show the output produced by the LDDS software package for the
standard map using the model parameter value K = 1.2.
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Figure 1: Lagrangian descriptor contour plot for the standard map, using p = 0.5-quasinorm and
integration time 7 = 15.

Flows:

= Forced undamped Duffing oscillator
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The Duffing oscillator is an example of a periodically driven oscillator with nonlinear elasticity
(Duffing (1918), Kovacic & Brennan (2011)). This can model the oscillations of a pendulum
whose stiffness does not obey Hooke's law or the motion of a particle in a double-well potential.
It is also known as a simple system that can exhibit chaos.

As a special case, the forced undamped Duffing oscillator is described by a time-dependent
Hamiltonian given by:

- S Dat g (5)

H(Iapm7 ) 2 2

where « and (3 are the model parameters and f(t) is the time-dependent focing added to the
system. The non-autonomous vector field that defines the dynamical system is given by:

= fl(xvpz) = Dz

(6)
Dy = —%—Z = fo(@,ps,t) = ax — B3 + f(t)

In the following figure we show the output produced by the LDDS software package for the
forced Duffing oscillator using the model parameter value @« = g = 1. The initial time is
to = 0 and the perturbation used is of the form f(¢) = Asin(wt) where A = 0.25 and w = 7.
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Figure 2: Lagrangian descriptor contour plot for the Duffing oscillator, using p = 0.5-quasinorm and
integration time 7 = 15.

= A double gyre flow with stochastic forcing

The double gyre is a recurrent pattern occurring in geophysical flows (Coulliette & Wiggins
(2001)). The stochastic dynamical system for a simplified model of this flow (Shadden et
al. (2005)) with additive noise is described by the following stochastic differential equations
(Balibrea-Iniesta et al. (2016)):

dX; = <—7TA sin (M) cos (W—Yt — Xy ) dt+ oy dW}
s

S
(7)
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where W1 and W?2 are Wiener processes and we have that:

F(Xy,t) = esin(wt + 1) X2 + (1 — 2esin(wt + ) X; (8)

In the following figure we show the output produced by the LDDS software package for the
stochastically forced double gyre using a noise amplitude of o1 = g2 = 0.1. The double gyre
model parameters are A =0.25, w =27, ¥ = =0, s =1, e = 0.25, and the initial time is

to = 0.
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Figure 3: Lagrangian descriptor contour plot for the Double-gyre with stochastic forcing, using
p = 0.5-quasinorm and integration time 7 = 15.

Four-dimensional phase space:
= Hénon-Heiles Hamiltonian.

The Hénon-Heiles system is a simplified model describing the restricted motion of a star around
the center of a galaxy (Henon & Heiles (1964)). This system is a paradigmatic example of a
time-independent Hamiltonian with two degrees of freedom, given by the function:

1 1 1
H(z,y,pe,py) = 50z + 1) + 5" + %) + 2%y — 29 9)

where the vector field is:
5o oH
s Dz

.o _
Opy (10)

In the next figure, we show the computation of Lagrangian descriptors with the LDDS software
package on the phase space slice described by the condition z = 0, p, > 0 for the energy of
the system Hy = 1/5.
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Figure 4: Lagrangian descriptor contour plot for the Hénon-Heiles Hamiltonian, using p = 0.5-
quasinorm and integration time 7 = 15.

Relation to ongoing research projects

Lagrangian descriptors form the basis of several past and ongoing research projects (Camara
et al. (2012), Camara et al. (2013), Lopesino et al. (2015), Craven & Hernandez (2015),
Craven & Hernandez (2016), Garcia-Garrido et al. (2016), Balibrea-Iniesta et al. (2016),
Demian & Wiggins (2017), Craven et al. (2017), Feldmaier et al. (2017), Junginger et al.
(2017), Garcia-Garrido et al. (2018), Ramos et al. (2018), Patra & Keshavamurthy (2018),
Naik et al. (2019), Naik & Wiggins (2019), Curbelo et al. (2019a), Curbelo et al. (2019b),
Revuelta et al. (2019), Garcia-Garrido, Naik, et al. (2020), Garcia-Garrido, Agaoglou, et
al. (2020), Krajnak et al. (2020), Naik & Wiggins (2020), Montoya & Wiggins (2020),
Katsanikas et al. (2020)). The common theme of all these projects is the investigation of
phase space structures that govern phase space transport in nonlinear dynamical systems. We
have also published an open-source book using Jupyter Book Executable Books Community
(2020) on the theory and applications of Lagrangian descriptors Agaoglou et al. (2020). This
open-source package is the computational companion to the book.

Acknowledgements

We acknowledge the support of EPSRC Grant No. EP/P021123/1 (CHAMPS project) and
Office of Naval Research (Grant No. N00014-01-1-0769).

References

Agaoglou, M., Aguilar-Sanjuan, B., Garcia-Garrido, V. J., Gonzalez-Montoya, F., Katsanikas,
M., Krajidk, V., Naik, S., & Wiggins, S. (2020). Lagrangian Descriptors: Discovery
and Quantification of Phase Space Structure and Transport. zenodo: 10.5281/zen-
0d0.3958985. https://doi.org/10.5281/zenodo.3958985

Balibrea-Iniesta, F., Lopesino, C., Wiggins, S., & Mancho, A. M. (2016). Lagrangian De-
scriptors for Stochastic Differential Equations: A Tool for Revealing the Phase Portrait of
Stochastic Dynamical Systems. International Journal of Bifurcation and Chaos, 26(13),
1630036. https://doi.org/10.1142/50218127416300366

Aguilar-Sanjuan et al., (2021). LDDS: Python package for computing and visualizing Lagrangian Descriptors for Dynamical Systems. Journal 6
of Open Source Software, 6(65), 3482. https://doi.org/10.21105/joss.03482


https://champsproject.com/
https://doi.org/10.5281/zenodo.3958985
https://doi.org/10.1142/S0218127416300366
https://doi.org/10.21105/joss.03482

SS

The Journal of Open Source Software

Briol, F., & d'Ovidio, F. (2011). Lagrangian. https://bitbucket.org/cnes_aviso/lagrangian/
src/master/

Cémara, A. de la, Mancho, A. M., Ide, K., Serrano, E., & Mechoso, C. R. (2012). Routes
of Transport Across the Antarctic Polar Vortex in the Southern Spring. J. Atmos. Sci.,
69(2), 753-767. https://doi.org/10.1175/JAS-D-11-0142.1

Cémara, A. de la, Mechoso, C. R., Mancho, A. M., Serrano, E., & Ide, K. (2013). Isen-
tropic Transport Within the Antarctic Polar-Night Vortex: Rossby Wave Breaking Evi-
dence and Lagrangian Structures. J. Atmos. Sci., 70, 2982-3001. https://doi.org/10.
1175/JAS-D-12-0274.1

Chirikov, B. V. (1971). Research Concerning the Theory of Non-Linear Resonance and
Stochasticity [translated at CERN by A. T. Sanders|. CERN Trans., 71(40). https:
//cds.cern.ch/record /325497

Coulliette, C., & Wiggins, S. (2001). Nonlinear Processes in Geophysics Intergyre Transport
in a Wind-Driven, Quasigeostrophic Double Gyre: An Application of Lobe Dynamics.
Nonlinear Processes in Geophysics, 8, 69—94.

Craven, G. T., & Hernandez, R. (2015). Lagrangian Descriptors of Thermalized Transition
States on Time-Varying Energy Surfaces. Physical Review Letters, 115(14), 148301.
https://doi.org/10.1103/physrevlett.115.148301

Craven, G. T., & Hernandez, R. (2016). Deconstructing Field-Induced Ketene Isomerization
Through Lagrangian Descriptors. Physical Chemistry Chemical Physics, 18(5), 4008—
4018. https://doi.org/10.1039/C5CP06624G

Craven, G. T., Junginger, A., & Hernandez, R. (2017). Lagrangian Descriptors of Driven
Chemical Reaction Manifolds. Physical Review E, 96(2), 022222. https://doi.org/10.
1103/PhysRevE.96.022222

Curbelo, J., Mechoso, C. R., Mancho, A. M., & Wiggins, S. (2019a). Lagrangian Study
of the Final Warming in the Southern Stratosphere During 2002: Part |. The Vortex
Splitting at Upper Levels. Climate Dynamics, 53(5), 2779-2792. https://doi.org/10.
1007/s00382-019-04832-y

Curbelo, J., Mechoso, C. R., Mancho, A. M., & Wiggins, S. (2019b). Lagrangian Study of the
Final Warming in the Southern Stratosphere During 2002: Part Il. 3D Structure. Climate
Dynamics, 53(3), 1277-1286. https://doi.org/10.1007/s00382-019-04833-x

Dabiri Lab. (2009). LCS MATLAB kit (Version 2.3). http://dabirilab.com/software.

Demian, A. S., & Wiggins, S. (2017). Detection of Periodic Orbits in Hamiltonian Systems
Using Lagrangian Descriptors. International Journal of Bifurcation and Chaos, 27(14),
1750225. https://doi.org/10.1142/5021812741750225X

Duffing, G. (1918). Erzwungene Schwingungen Bei Veranderlicher Eigenfrequenz Und lhre
Technische Bedeutung. Sammlung Vieweg, No 41/42. Vieweg & Sohn, Braunschweig.

Executable Books Community. (2020). Jupyter Book. (Version v0.10) [Computer software].
Zenodo. https://doi.org/10.5281 /zenodo.4539666

Feldmaier, M., Junginger, A., Main, G., J.and Wunner, & Hernandez, R. (2017). Obtain-
ing Time-Dependent Multi-Dimensional Dividing Surfaces Using Lagrangian Descriptors.
Chemical Physics Letters, 687, 194-199. https://doi.org/10.1016/j.cplett.2017.09.008

Finn, J., & Apte, S. V. (2013). Integrated Computation of Finite Time Lyapunov Exponent
Fields During Direct Numerical Simulation of Unsteady Flows. Chaos, 23, 013145. https:
//doi.org/10.1063/1.4795749

Garcia-Garrido, V. J., Agaoglou, M., & Wiggins, S. (2020). Exploring Isomerization Dy-
namics on a Potential Energy Surface with an Index-2 Saddle Using Lagrangian De-

Aguilar-Sanjuan et al., (2021). LDDS: Python package for computing and visualizing Lagrangian Descriptors for Dynamical Systems. Journal 7
of Open Source Software, 6(65), 3482. https://doi.org/10.21105/joss.03482


https://bitbucket.org/cnes_aviso/lagrangian/src/master/
https://bitbucket.org/cnes_aviso/lagrangian/src/master/
https://doi.org/10.1175/JAS-D-11-0142.1
https://doi.org/10.1175/JAS-D-12-0274.1
https://doi.org/10.1175/JAS-D-12-0274.1
https://cds.cern.ch/record/325497
https://cds.cern.ch/record/325497
https://doi.org/10.1103/physrevlett.115.148301
https://doi.org/10.1039/C5CP06624G
https://doi.org/10.1103/PhysRevE.96.022222
https://doi.org/10.1103/PhysRevE.96.022222
https://doi.org/10.1007/s00382-019-04832-y
https://doi.org/10.1007/s00382-019-04832-y
https://doi.org/10.1007/s00382-019-04833-x
http://dabirilab.com/software
https://doi.org/10.1142/S021812741750225X
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.1016/j.cplett.2017.09.008
https://doi.org/10.1063/1.4795749
https://doi.org/10.1063/1.4795749
https://doi.org/10.21105/joss.03482

SS

The Journal of Open Source Software

scriptors. Communications in Nonlinear Science and Numerical Simulation, 89, 105331.
https://doi.org/10.1016/j.cnsns.2020.105331

Garcia-Garrido, V. J., Curbelo, J., Mancho, A. M., Wiggins, S., & Mechoso, C. R. (2018).
The Application of Lagrangian Descriptors to 3D Vector Fields. Regular and Chaotic
Dynamics, 23(5), 551-568. https://doi.org/10.1134/51560354718050052

Garcia-Garrido, V. J., Naik, S., & Wiggins, S. (2020). Tilting and Squeezing: Phase Space
Geometry of Hamiltonian Saddle-Node Bifurcation and Its Influence on Chemical Reaction
Dynamics. International Journal of Bifurcation and Chaos, 30(04), 2030008. https://doi.
org/10.1142,/50218127420300086

Garcia-Garrido, V. J., Ramos, A., Mancho, A. M., Coca, J., & Wiggins, S. (2016). A Dynam-
ical Systems Perspective for a Real-Time Response to a Marine Oil Spill. Marine Pollution
Bulletin., 1-10. https://doi.org/10.1016/j.marpolbul.2016.08.018

Haller, G., Katsanoulis, S., Holzner, M., Frohnapfel, B., & Gatti, D. (2020). Objective
Barriers to the Transport of Dynamically Active Vector Fields. J. Fluid Mech., 905, A17.
https://doi.org/10.1017/jfm.2020.737

Henon, M., & Heiles, C. (1964). The Applicability of the Third Integral of Motion: Some Nu-
merical Experiments. The Astronomical Journal, 69(1). https://doi.org/10.1086/109234

Jiménez Madrid, J. A., & Mancho, A. M. (2009). Distinguished Trajectories in Time Depen-
dent Vector Fields. Chaos, 19. http://dx.doi.org/10.1063/1.3056050

Junginger, A., Duvenbeck, L., Feldmaier, M., Main, G., J.and Wunner, & Hernandez, R.
(2017). Chemical Dynamics between Wells across a Time-Dependent Barrier: Self-
Similarity in the Lagrangian Descriptor and Reactive Basins. The Journal of Chemical
Physics, 147(6), 064101. https://doi.org/10.1063/1.4997379

Katsanikas, M., Garcia-Garrido, V. J., & Wiggins, S. (2020). The Dynamical Matching
Mechanism in Phase Space for Caldera-Type Potential Energy Surfaces. Chemical Physics
Letters, 743, 137199. https://doi.org/10.1016/].cplett.2020.137199

Katsanoulis, S., & Haller, G. (2018). BarrierTool.  https://github.com/haller-group/
BarrierTool

Koon, W. S., Lo, M. W., Marsden, J. E., & Ross, S. D. (2000). Heteroclinic Connections
between Periodic Orbits and Resonance Transitions in Celestial Mechanics. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 10(2), 427-469. https://doi.org/10.1063/
1.166509

Kovacic, |., & Brennan, M. J. (2011). The Duffing Equation: Nonlinear Oscillators and Their
Behaviour. John Wiley; Sons. https://doi.org/10.1002/9780470977859

Krajidk, V., Ezra, G. S., & Wiggins, S. (2020). Using Lagrangian Descriptors to Uncover
Invariant Structures in Chesnavich's Isokinetic Model with Application to Roaming. In-
ternational Journal of Bifurcation and Chaos, 30(5), 2050076. https://doi.org/10.1142/
S0218127420500765

Lopesino, C., Balibrea-Iniesta, F., Garcia-Garrido, V. J., Wiggins, S., & Mancho, A. M. (2017).
A Theoretical Framework for Lagrangian Descriptors. International Journal of Bifurcation
and Chaos, 27(01), 1730001. https://doi.org/10.1142/S0218127417300014

Lopesino, C., Balibrea-Iniesta, F., Wiggins, S., & Mancho., A. M. (2015). Lagrangian De-
scriptors for Two Dimensional, Area Preserving Autonomous and Nonautonomous Maps.
Communications in Nonlinear Science and Numerical Simulation, 27(1-3), 40-51. https:
//doi.org/10.1016/j.cnsns.2015.02.022

MacKay, R. S., Meiss, J. D., & Percival, I. C. (1984). Transport in Hamiltonian Sys-
tems. Physica D: Nonlinear Phenomena, 13(1-2), 55-81. https://doi.org/10.1016/
0167-2789(84)90270-7

Aguilar-Sanjuan et al., (2021). LDDS: Python package for computing and visualizing Lagrangian Descriptors for Dynamical Systems. Journal 8
of Open Source Software, 6(65), 3482. https://doi.org/10.21105/joss.03482


https://doi.org/10.1016/j.cnsns.2020.105331
https://doi.org/10.1134/S1560354718050052
https://doi.org/10.1142/S0218127420300086
https://doi.org/10.1142/S0218127420300086
https://doi.org/10.1016/j.marpolbul.2016.08.018
https://doi.org/10.1017/jfm.2020.737
https://doi.org/10.1086/109234
http://dx.doi.org/10.1063/1.3056050
https://doi.org/10.1063/1.4997379
https://doi.org/10.1016/j.cplett.2020.137199
https://github.com/haller-group/BarrierTool
https://github.com/haller-group/BarrierTool
https://doi.org/10.1063/1.166509
https://doi.org/10.1063/1.166509
https://doi.org/10.1002/9780470977859
https://doi.org/10.1142/S0218127420500765
https://doi.org/10.1142/S0218127420500765
https://doi.org/10.1142/S0218127417300014
https://doi.org/10.1016/j.cnsns.2015.02.022
https://doi.org/10.1016/j.cnsns.2015.02.022
https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/10.21105/joss.03482

SS

The Journal of Open Source Software

Mancho, A. M., Wiggins, S., Curbelo, J., & Mendoza, C. (2013). Lagrangian Descriptors:
A Method for Revealing Phase Space Structures of General Time Dependent Dynamical
Systems. Communications in Nonlinear Science and Numerical Simulation, 18(12), 3530—
3557. https://doi.org/10.1016/j.cnsns.2013.05.002

Meiss, J. D. (1992). Symplectic Maps, Variational Principles, and Transport. Rev. Mod.
Phys., 64, 795-848. https://doi.org/10.1103/RevModPhys.64.795

Meiss, J. D. (2008). Visual Explorations of Dynamics: The Standard Map. (No. 6; Vol. 70,
pp. 965-988). https://doi.org/10.1007 /s12043-008-0103-3

Meiss, J. D. (2015). Thirty Years of Turnstiles and Transport. Chaos, 25(9). https://doi.
org/10.1063/1.4915831

Montoya, F. G., & Wiggins, S. (2020). Revealing Roaming on the Double Morse Potential
Energy Surface With Lagrangian Descriptors. Journal of Physics A: Mathematical and
Theoretical, 53(23), 235702. https://doi.org/10.1088/1751-8121/ab8b75

Naik, S., Garcfa-Garrido, V. J., & Wiggins, S. (2019). Finding NHIM: ldentifying High
Dimensional Phase Space Structures in Reaction Dynamics Using Lagrangian Descriptors.
Communications in Nonlinear Science and Numerical Simulation, 79, 104907. https://
doi.org/10.1016/j.cnsns.2019.104907

Naik, S., & Wiggins, S. (2019). Finding Normally Hyperbolic Invariant Manifolds in Two
and Three Degrees of Freedom With Hénon-Heiles-Type Potential. Phys. Rev. E, 100,
022204. https://doi.org/10.1103/PhysRevE.100.022204

Naik, S., & Wiggins, S. (2020). Detecting Reactive Islands in a System-Bath Model of
Isomerization. Phys. Chem. Chem. Phys. https://doi.org/10.1039/D0CP01362E

Nelson, D. A., & Jacobs, G. B. (2016). High-Order Visualization of Three-Dimensional
Lagrangian Coherent Structures With DG-FTLE. Computers & Fluids, 139, 197. https:
//doi.org/10.1016/j.compfluid.2016.07.007

Onu, K., Huhn, F., & Haller, G. (2015). LCS Tool: A Computational Platform for Lagrangian
Coherent Structures. J. Comput. Sci., 7, 26. https://doi.org/10.1016/].jocs.2014.12.002

Ozorio de Almeida, A. M., De Leon, N., Mehta, M. A., & Marston, C. C. (1990). Geometry
and Dynamics of Stable and Unstable Cylinders in Hamiltonian Systems. Physica D:
Nonlinear Phenomena, 46(2), 265-285. https://doi.org/10.1016,/0167-2789(90)90040-V

Patra, S., & Keshavamurthy, S. (2018). Detecting Reactive Islands Using Lagrangian De-
scriptors and the Relevance to Transition Path Sampling. Physical Chemistry Chemical
Physics, 20(7), 4970-4981. https://doi.org/10.1039/C7CP05912D

Ramos, A. G., Garcia-Garrido, V. J., Mancho, A. M., Wiggins, S., Coca, J., Glenn, S.,
Schofield, O., Kohut, J., Aragon, D., Kerfoot, J., Haskins, T., Miles, T., Haldeman, C.,,
Strandskov, N., Allsup, B., Jones, C., & Shapiro, J. (2018). Lagrangian Coherent Struc-
ture Assisted Path Planning for Transoceanic Autonomous Underwater Vehicle Missions.
Scientfic Reports, 8, 4575. https://doi.org/10.1038/s41598-018-23028-8

Revuelta, F., Benito, R. M., & Borondo, F. (2019). Unveiling the Chaotic Structure in Phase
Space of Molecular Systems Using Lagrangian Descriptors. Physical Review E, 99(3),
032221. https://doi.org/10.1103/PhysRevE.99.032221

Rom-Kedar, V., Leonard, A., & Wiggins, S. (1990). An Analytical Study of Transport, Mixing
and Chaos in an Unsteady Vortical Flow. Journal of Fluid Mechanics, 214, 347-394.
https://doi.org/10.1017/50022112090000167

Rom-Kedar, V., & Wiggins, S. (1990). Transport in Two-Dimensional Maps. Arch. Ration.
Mech. A.l, 109(3). https://doi.org/10.1007/BF00375090

Shadden, S. C., Lekien, F., & Marsden, J. E. (2005). Definition and Properties of Lagrangian
Coherent Structures From Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic

Aguilar-Sanjuan et al., (2021). LDDS: Python package for computing and visualizing Lagrangian Descriptors for Dynamical Systems. Journal 9
of Open Source Software, 6(65), 3482. https://doi.org/10.21105/joss.03482


https://doi.org/10.1016/j.cnsns.2013.05.002
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1007/s12043-008-0103-3
https://doi.org/10.1063/1.4915831
https://doi.org/10.1063/1.4915831
https://doi.org/10.1088/1751-8121/ab8b75
https://doi.org/10.1016/j.cnsns.2019.104907
https://doi.org/10.1016/j.cnsns.2019.104907
https://doi.org/10.1103/PhysRevE.100.022204
https://doi.org/10.1039/D0CP01362E
https://doi.org/10.1016/j.compfluid.2016.07.007
https://doi.org/10.1016/j.compfluid.2016.07.007
https://doi.org/10.1016/j.jocs.2014.12.002
https://doi.org/10.1016/0167-2789(90)90040-V
https://doi.org/10.1039/C7CP05912D
https://doi.org/10.1038/s41598-018-23028-8
https://doi.org/10.1103/PhysRevE.99.032221
https://doi.org/10.1017/S0022112090000167
https://doi.org/10.1007/BF00375090
https://doi.org/10.21105/joss.03482

SS

The Journal of Open Source Software

Flows. Physica D: Nonlinear Phenomena, 212(3-4), 271-304. https://doi.org/10.1016/j.
physd.2005.10.007

Waalkens, H., Burbanks, A., & Wiggins, S. (2005). Escape From Planetary Neighbourhoods.
Monthly Notices of the Royal Astronomical Society, 361(3), 763-775. https://doi.org/
10.1111/j.1365-2966.2005.09237 .x

Wiggins, S. (2016). The Role of Normally Hyperbolic Invariant Manifolds (NHIMs) In the
Context of the Phase Space Setting for Chemical Reaction Dynamics. Regular and Chaotic
Dynamics, 21(6), 621-638. https://doi.org/10.1134/S1560354716060034

Wiggins, S. (1994). Normally Hyperbolic Invariant Manifolds in Dynamical Systems. (Vol.
105). Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-4312-0

Zhong, J., & Ross, S. D. (2020). Geometry of Escape and Transition Dynamics in the Presence
of Dissipative and Gyroscopic Forces in Two Degree of Freedom Systems. Communications

in Nonlinear Science and Numerical Simulation, 82, 105033. https://doi.org/10.1016/].
cnsns.2019.105033

Zhong, J., Virgin, L. N., & Ross, S. D. (2018). A Tube Dynamics Perspective Governing
Stability Transitions: An Example Based on Snap-Through Buckling. International Journal
of Mechanical Sciences, 149, 413-428. https://doi.org/10.1016/j.ijmecsci.2017.10.040

Aguilar-Sanjuan et al., (2021). LDDS: Python package for computing and visualizing Lagrangian Descriptors for Dynamical Systems. Journa/l0
of Open Source Software, 6(65), 3482. https://doi.org/10.21105/joss.03482


https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1111/j.1365-2966.2005.09237.x
https://doi.org/10.1111/j.1365-2966.2005.09237.x
https://doi.org/10.1134/S1560354716060034
https://doi.org/10.1007/978-1-4612-4312-0
https://doi.org/10.1016/j.cnsns.2019.105033
https://doi.org/10.1016/j.cnsns.2019.105033
https://doi.org/10.1016/j.ijmecsci.2017.10.040
https://doi.org/10.21105/joss.03482

	Statement of Need
	Summary and Functionalities
	Example systems

	Relation to ongoing research projects
	Acknowledgements
	References

