
Lerche: Generating data file processors in Julia from
EBNF grammars
James R. Hester∗1 and Erez Shinan2

1 Australian Nuclear Science and Technology Organisation, Sydney, Australia 2 Independent
researcher

DOI: 10.21105/joss.03497

Software
• Review
• Repository
• Archive

Editor: Sebastian Benthall
Reviewers:

• @ziotom78
• @eschnett

Submitted: 03 May 2021
Published: 24 August 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

In a scientific context, structured text is commonly encountered in data files and domain-
specific languages (DSLs) for handling data. Extended Backhaus-Naur Format (EBNF) (ISO
Central Secretary, 1996) is a well-established standard for describing the syntax of such struc-
tured text. A useful subset of such grammars is known as LALR(1), meaning that the
grammars describe text that can be unambiguously parsed based only on the tokens already
seen and the next token of input (DeRemer, 1969). LALR(1) stands out for being able to
parse most programming languages, while guaranteeing O(n) run-time complexity and very
light memory use. The Lerche Julia package automatically generates a parser that processes
any data file or domain-specific language that can be described using a LALR(1) EBNF. The
parse tree can be immediately transformed into application-specific data structures using user-
supplied rules. This parser generator fills a gap in standards-based scientific work for the Julia
ecosystem.

Statement of Need

Standards for scientific data formats are essential for correct interpretation of data produced
and consumed by parties that are not in direct contact. Standardisation is also becoming
increasingly important as requirements for accessible and reusable data increase among fund-
ing bodies and publishers. The use of formal description languages, such as EBNF, removes
ambiguity that may arise when using natural language descriptions for these standards. Fur-
thermore, a parser that is machine-generated from an EBNF description is guaranteed to
generate a correct parse tree from conformant data, unlike hand-written parsers. In addition,
development of a formal scientific standard written using EBNF is aided by the availability of
EBNF parsers that identify ambiguities and errors.
Scientific data readers typically form a small component of larger projects, which will dictate
the programming environment and policies. This environment restricts the choice of EBNF
parser generators; an EBNF parser generator that executes in the usual project environment is
preferable to one that introduces new build-time dependencies and environments. Lerche was
translated into Julia from the Python Lark project (Shinan, 2021) in order to remove the need
for any extra language dependencies or build steps when developing standards-conformant
data format readers for Julia projects. The generated parsers run within the Julia language
environment, and are straightforward to integrate into larger Julia projects.
Other native parser tools available for Julia projects include ParserCombinator (Cooke,
2021), Pegparser (Schneider, 2020), and the built-in Julia macro system. None of these

∗Corresponding author

Hester et al., (2021). Lerche: Generating data file processors in Julia from EBNF grammars. Journal of Open Source Software, 6(64), 3497.
https://doi.org/10.21105/joss.03497

1

https://doi.org/10.21105/joss.03497
https://github.com/openjournals/joss-reviews/issues/3497
https://github.com/jamesrhester/Lerche.jl
https://doi.org/10.5281/zenodo.5178771
https://sbenthall.net 
https://github.com/ziotom78
https://github.com/eschnett
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03497


take EBNF as input. Reliance on EBNF parser generators external to the Julia environment,
for example, by calling Lark or pre-generating parsers, complicates distribution and creates a
barrier to user contribution to packages.
dREL (Spadaccini et al., 2012) is a relational data processing language for specifying crystallo-
graphic algorithms. The dREL LALR(1) EBNF (Hester, 2021a) was developed using Lerche
to verify its correctness and conformance to LALR(1) requirements. The DrelTools (Hester,
2021c) package is built around the parser automatically generated by Lerche from this EBNF.
Lerche is also used by CrystalInfoFramework (Hester, 2021b) to generate the parser for
data files written in the Crystallographic Information Framework (CIF) format (Bernstein et
al., 2016).

Performance

One of Julia’s attractions is the potential for performance close to that of a compiled language,
while retaining features normally found in high-level interpreted languages. Fully realising this
potential usually requires some investment in code design and profiling, which has so far been
minimal for Lerche.jl. Nevertheless, parsing a 500K mmCIF text file from the worldwide
Protein Data Bank (Berman et al., 2003) with Lerche.jl is around 3 times faster than
using Lark with CPython, if initial compilation time is ignored. This improvement essentially
disappears if the PyPy just-in-time Python interpreter is used instead of CPython. Therefore,
although further improvements to Lerche.jl runtime performance are likely possible and
may be realised in future versions, at this point switching to Julia and Lerche.jl to improve
performance should be weighed carefully against the option of simply switching to a faster
Python interpreter.

Features

Lerche optionally augments the range of applicable EBNF grammars by using contextual
lexing. In this mode, only those tokens that are possible in the current parsing state are
matched by the lexer, which can be useful for grammars in which certain character sequences
match more than one type of token; for example, a keyword may also be a possible value for
a plain sequence of characters in certain contexts, in which case a non-contextual lexer might
wrongly fail to recognise the keyword.
The Lark grammars recognised by Lerche extend the EBNF standard in several ways. To
aid in composability, they support templating, and importing rules and terminals from other
grammars. To aid in refactoring, they support expressing rule semantics, which are translatable
to common tree operations. For example, rules starting with _ are considered to be auxiliary,
and don’t produce their own node. Terminals starting with _ aren’t included in the tree, which
is often desired for punctation such as commas and parentheses. In order to resolve possible
ambiguities or conflicts, there is support for specifying priority in terminals and rules.

References

Berman, H. M., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein
data bank. Nature Structural Biology, 10(12).

Bernstein, H. J., Bollinger, J. C., Brown, I. D., Gražulis, S., Hester, J. R., McMahon, B.,
Spadaccini, N., Westbrook, J. D., & Westrip, S. P. (2016). Specification of the Crystal-
lographic Information File format, version 2.0. Journal of Applied Crystallography, 49(1),
277–284. https://doi.org/10.1107/S1600576715021871

Hester et al., (2021). Lerche: Generating data file processors in Julia from EBNF grammars. Journal of Open Source Software, 6(64), 3497.
https://doi.org/10.21105/joss.03497

2

https://doi.org/10.1107/S1600576715021871
https://doi.org/10.21105/joss.03497


Cooke, A. (2021). ParserCombinator.jl. In Github repository. Github. https://github.com/
andrewcooke/ParserCombinator.jl

DeRemer, F. L. (1969). Practical translators for LR(k) languages [PhD thesis]. MIT.
Hester, J. R. (2021a). A draft annotated grammar for dREL. In Github repository. Github.

https://github.com/COMCIFS/dREL/blob/master/annotated-grammar.rst
Hester, J. R. (2021b). CrystalInfoFramework.jl. In Github repository. Github. https://github.

com/jamesrhester/CrystalInfoFramework.jl
Hester, J. R. (2021c). DrelTools.jl. In Github repository. Github. https://github.com/

jamesrhester/DrelTools.jl
ISO Central Secretary. (1996). Information technology — Syntactic metalanguage — Ex-

tended BNF (Standard ISO/IEC 14977:1996). International Organization for Standard-
ization. https://www.iso.org/standard/26153.html

Schneider, A. (2020). PEGParser.jl. In Github repository. Github. https://github.com/
abeschneider/PEGParser.jl

Shinan, E. (2021). Lark. In Github repository. Github. https://github.com/lark-parser/Lark
Spadaccini, N., Castleden, I. R., Boulay, D. du, & Hall, S. R. (2012). dREL: A relational ex-

pression language for dictionary methods. Journal of Chemical Information and Modeling,
52(8), 1917–1925. https://doi.org/10.1021/ci300076w

Hester et al., (2021). Lerche: Generating data file processors in Julia from EBNF grammars. Journal of Open Source Software, 6(64), 3497.
https://doi.org/10.21105/joss.03497

3

https://github.com/andrewcooke/ParserCombinator.jl
https://github.com/andrewcooke/ParserCombinator.jl
https://github.com/COMCIFS/dREL/blob/master/annotated-grammar.rst
https://github.com/jamesrhester/CrystalInfoFramework.jl
https://github.com/jamesrhester/CrystalInfoFramework.jl
https://github.com/jamesrhester/DrelTools.jl
https://github.com/jamesrhester/DrelTools.jl
https://www.iso.org/standard/26153.html
https://github.com/abeschneider/PEGParser.jl
https://github.com/abeschneider/PEGParser.jl
https://github.com/lark-parser/Lark
https://doi.org/10.1021/ci300076w
https://doi.org/10.21105/joss.03497

	Summary
	Statement of Need
	Performance
	Features
	References

