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Summary

Exact diagonalization (ED) is one of the most reliable and established numerical methods of
quantum many-body theory. It is precise, unbiased, and general enough to be applicable to a
huge variety of problems in condensed matter physics. Mathematically, ED is a linear algebra
problem involving a matrix called the Hamiltonian. For a system of spin-1/2 particles, the
size of this matrix scales exponentially (as O(2N )) with the number of particles N .
Very fast scaling of memory requirements with system size is the main computational challenge
of the method. There are a few techniques allowing one to lower the amount of storage used by
the Hamiltonian. For example, one can store only the non-zero elements of the Hamiltonian.
This is beneficial when the Hamiltonian is sparse, which is usually the case in condensed
matter physics. One can even take it one step further and avoid storing the matrix altogether
by instead computing matrix elements on the fly.
A complementary approach to reduce memory requirements is to make use of system sym-
metries. For example, many relevant Hamiltonians possess U(1) symmetry, which permits
one to perform calculations assuming that the number of particles (or number of spins point-
ing upwards), is fixed. Another example would be translational invariance of the underlying
lattice.
Although the algorithms for dealing with lattice symmetries are well known (Sandvik et al.,
2010), implementing them remains a non-trivial task. Here we present lattice-symmetries,
a package providing high-quality and high-performance realization of these algorithms. Instead
of writing their own optimized implementation for every system of interest, a domain expert
provides system-specific details (such as the number of particles or momentum quantum
number) to lattice-symmetries and it will automatically construct a reduced Hamiltonian.
The dimension of the new Hamiltonian can be multiple orders of magnitude smaller than of
the original one.
Furthermore, in lattice-symmetries the Hamiltonian itself is never stored. Instead, its
matrix elements are computed on the fly, which reduces the memory requirements even more.
Care is taken to keep the implementation generic such that different physical systems can be
studied, but without sacrificing performance as we will show in the next section.
All in all, lattice-symmetries serves as a foundation for building state-of-the-art ED and
VMC (Variational Monte Carlo) applications. For example, SpinED (Westerhout, 2020) is an
easy-to-use application for exact diagonalization that is built on top of lattice-symmetries
and can handle clusters of at least 42 spins on a single node.

Statement of need

Exact diagonalization is an old and well-established method and many packages have been
written for it. However, we find that most state-of-the-art implementations (Läuchli et al.,
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2019; Wietek & Läuchli, 2018) are closed-source. There are but three notable open-source
projects that natively support spin systems1 : HΦ (Kawamura et al., 2017), SPINPACK (Schu-
lenburg, 2017), and QuSpin (Weinberg & Bukov, 2017).

Figure 1: Performance of matrix-vector products in QuSpin, SPINPACK, and lattice-symmetries.
For a Heisenberg Hamiltonian on square lattices of different sizes, we measure the time it takes to
do a single matrix-vector product. Timings for lattice-symmetries are normalized to 1 to show
relative speedup compared to QuSpin, with absolute times in seconds listed as well. Depending on
the system speedups over QuSpin vary between 5 and 22 times, but in all cases lattice-symmetries
is significantly faster.

HΦ implements a variety of Hamiltonians, works at both zero and finite temperatures, and
supports multi-node computations. However, there are a few points in which lattice-s
ymmetries improves upon HΦ. Firstly, HΦ does not support arbitrary lattice symmetries.
Secondly, it uses a custom input file format making it not user-friendly. Finally, since HΦ is
an executable, it cannot be used to as a library to develop new algorithms and applications.
SPINPACK is another popular solution for diagonalization of spin Hamiltonians. SPINPACK
does support user-defined symmetries, unlike HΦ, but its interface is even less user-friendly.
Defining a lattice, Hamiltonian, and symmetries requires writing non-trivial amounts of C
code. Finally, SPINPACK is slower than lattice-symmetries as illustrated in Figure 1.
QuSpin is much closer in functionality to lattice-symmetries. It is a high-level Python
package, which natively supports (but is not limited to) spin systems, can employ user-defined
lattice symmetries, and can also perform matrix-free calculations (where matrix elements are
computed on the fly). However, QuSpin mostly focuses on ease of use and functionality rather
than performance. In lattice-symmetries we follow UNIX philosophy (Salus, 1994) and
try to “do one thing but do it well.” Even though lattice-symmetries uses essentially the
same algorithms as QuSpin, careful implementation allows us to achieve an order of magnitude
speedup as shown in Figure 1. To achieve such performance, we make heavy use of Single
Instruction Multiple Data (SIMD) instructions supported by modern processors. Vector Class
Library (Fog, 2020) is used to write all performance-critical kernels, which currently limits the
portability of lattice-symmetries to processors supporting x86-64 instruction sets.
lattice-symmetries is a library implemented in C++ and C. It provides two interfaces:

1There are a few projects targeting fermionic systems and the Hubbard model in particular. Although it is
possible to transform a spin Hamiltonian into a fermionic one, it is impractical for large-scale simulations since
lattice symmetries are lost in the new Hamiltonian.
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• Low-level C interface which can be used to implement ED and VMC applications with
focus on performance.

• A higher-level Python wrapper which allows to easily test and prototype algorithms.

The library is easily installable via the Conda package manager.
The general workflow is as follows: the user starts by defining a few symmetry generators
(ls_symmetry/Symmetry in C/Python) from which lattice-symmetries automatically
constructs the symmetry group (ls_group/Group in C/Python). The user then proceeds to
constructing the Hilbert space basis (ls_spin_basis/SpinBasis in C/Python). For some
applications functionality provided by SpinBasis may be sufficient, but typically the user
will construct one (or multiple) quantum mechanical operators (ls_operator/Operator in
C/Python) corresponding to the Hamiltonian and various observables. lattice-symmetries
supports generic 1-, 2-, 3-, and 4-point operators. Examples of Hamiltonians that can be
constructed include

H =
∑
i,j

Jijσi · σj Heisenberg interaction,

H =
∑
i,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
x
i Ising model in transverse magnetic field,

H =
∑
i,j

Dij [σi × σj ] Dzyaloshinskii-Moriya interaction.

Here, σ denotes Pauli matrices, J and D are various coupling constants, and sums over i and
j can run over arbitrary used-defined geometries.
Operators can be efficiently applied to vectors in the Hilbert space (i.e., wavefunctions).
Also, in cases when the Hilbert space dimension is so big that the wavefunction cannot be
written down explicitly (as a list of coefficients), Operator can be applied to individual spin
configurations to implement Monte Carlo local estimators.
As an example of what can be done with lattice-symmetries, we implemented a standalone
application for exact diagonalization studies of spin-1/2 systems, SpinED. By combining latt
ice-symmetries with the PRIMME eigensolver (Stathopoulos & McCombs, 2010), it allows
one to treat systems of at least 42 sites on a single node. SpinED is distributed as a statically-
linked executable — one can download one file and immediately get started with physics. All
in all, it makes large-scale ED more approachable for non-experts.
Notable research projects using lattice-symmetries and SpinED include Astrakhantsev et
al. (2021), Bagrov et al. (2020), and Westerhout et al. (2020). Additionally, lattice-sym
metries is being used to simulate quantum circuits (Astrakhantsev, 2021).
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