
sorn: A Python package for Self Organizing Recurrent
Neural Network
Saranraj Nambusubramaniyan1,2

1 Indian center for Robotics Innovation and Smart-intelligence(IRIS-i), India 2 Institute of Cognitive
Science, Universität Osnabrück, Germany

DOI: 10.21105/joss.03545

Software
• Review
• Repository
• Archive

Editor: Rachel Kurchin
Reviewers:

• @janfreyberg
• @janfb

Submitted: 24 July 2021
Published: 10 September 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
The self-organizing recurrent neural (SORN) network is a class of neuro-inspired artificial
networks. This class of networks has been shown to mimic the ability of neocortical circuits
to learn and adapt through neuroplasticity mechanisms. Structurally, the SORN network
consists of a pool of excitatory neurons and a small population of inhibitory neurons. The
network uses five basic plasticity mechanisms found in the neocortex of the brain, namely,
spike-timing-dependent plasticity, intrinsic plasticity, synaptic scaling, inhibitory spike-timing-
dependent plasticity, and structural plasticity (Lazar et al., 2009; Papa et al., 2017; Zheng et
al., 2013) to optimize its parameters. Using mathematical tools, a SORN network simplifies
the underlying structural and functional connectivity mechanisms responsible for learning and
memory in the brain.

Figure 1: SORN network

sorn is a Python package designed for Self Organizing Recurrent Neural Networks.
While it was originally developed for SORN networks, it can also serve as an ideal re-
search package for Liquid State Machines (Jaeger, 2002; Jaeger et al., 2007) in general.
The detailed documentation can be found at https://self-organizing-recurrent-neural-
networks.readthedocs.io/en/latest/. To extend the potential applications of this network
architecture, a demonstrative example of a neuro-robotics experiment using OpenAI Gym
(Brockman et al., 2016) is provided at sorn package.

Nambusubramaniyan, S., (2021). sorn: A Python package for Self Organizing Recurrent Neural Network. Journal of Open Source Software,
6(65), 3545. https://doi.org/10.21105/joss.03545

1

https://doi.org/10.21105/joss.03545
https://github.com/openjournals/joss-reviews/issues/3545
https://github.com/Saran-nns/sorn/
https://doi.org/10.5281/zenodo.5496017
rkurchin.github.io
https://github.com/janfreyberg
https://github.com/janfb
http://creativecommons.org/licenses/by/4.0/
self-organizing-recurrent-neural-networks.readthedocs.io
self-organizing-recurrent-neural-networks.readthedocs.io
https://github.com/Saran-nns/sorn/
https://doi.org/10.21105/joss.03545

Statement of need
Reservoir computing (RC) models are neuroinspired artificial neural networks. RC networks
have either sparsely or densely connected units with fixed connection weights. Unlike other
RC models, SORN has synaptic weights controlled by neuroinspired plasticity mechanisms.
The network has two distinct pools of excitatory and inhibitory reservoirs that compete to
remain in a subcritical state suitable for learning. The subcritical state is a state between
chaos and order, also called the “edge of chaos.” In this state, the network has momentum
with a strong affinity for order, but is sensitive to external perturbations. Through plasticity
mechanisms, the network has the ability to overcome the perturbations and return to its sub-
critical dynamics. This self-adaptive behavior is also referred to as self-organization. To build
such a network with a synergistic combination of plasticity mechanisms from scratch requires
a deeper understanding of neurophysiology and soft computing. sorn reduces the cognitive
load of theorists, experimenters or researchers by encapsulating all plasticity mechanisms with
a high degree of reliability and flexibility.
There are few other open source codes sorn v1, sorn v2, for SORN networks, but they are
application-specific and are not general-purpose software packages. However, sorn is a flexible
package that allows researchers to develop the network of their interest, providing them the
freedom to choose the combination of plasticity rules of their choice. Moreover, it is easy
to integrate sorn with machine learning frameworks such as PyTorch and reinforcement
learning toolkits such as OpenAI Gym. Overall, sorn provides a research environment for
computational neuroscientists to study self-organization, adaptation, learning, memory, and
behavior of brain circuits by reverse-engineering neural plasticity mechanisms.

Library Overview
The package sorn is heavily dependent on numpy (Harris et al., 2020) for numerical computa-
tion and analysis methods, seaborn and matplotlib (Barrett et al., 2005) for visualization. The
network is constructed in five classes; the object SORN encapsulates all the required functions
that instantiate network variables such as connection weights and thresholds. Plasticity
inherits objects from SORN and implements plasticity rules with methods stdp(), ip(), ss(),
sp() and istdp(). NetworkState has methods that evaluate excitatory and inhibitory
network states at each time step and finally MatrixCollection objects behave like a mem-
ory cache. It collects the network states and keeps track of variables such as weights and
thresholds as the network evolves during simulation and training.
The network can be instantiated, simulated and trained using two classes: Simulator and
Trainer, which inherit objects from SORN.

SORN Network Model
As defined in (Lazar et al., 2009; Zheng et al., 2013) the activity of neurons in the excitatory
and inhibitory pool is given by the following state equations,

xi(t+ 1) = Θ

NE∑
j=1

W EE
ij (t)xj(t)−

N I∑
j=1

W EI
ik (t)yk(t) + ui(t)− T E

i (t) + ξE(t)

 (1)

yi(t+ 1) = Θ

 Ni∑
j=1

W IE
ij (t)xj(t)− T I

i + ξI(t)

 (2)

W EE
ij - Connection strength between excitatory neurons

W EI
ik - Synaptic strenght from Inhibitory to excitatory network

Nambusubramaniyan, S., (2021). sorn: A Python package for Self Organizing Recurrent Neural Network. Journal of Open Source Software,
6(65), 3545. https://doi.org/10.21105/joss.03545

2

https://github.com/delpapa/SORN
https://github.com/delpapa/SORN_V2
https://doi.org/10.21105/joss.03545

W IE
ki - Synaptic strenght from Exciatory to inhibitory network

xj(t) - Presynaptic excitatory neuron state at t
yk(t) - Presynaptic inhibitory neuron state at t

xi(t) - Postsynaptic neuron state at t
ui - External stimuli
Ti(t) - Firing threshold of the neuron i at time t

Plasticity Rules
Spike Timing Dependent Plasticity

Spike Timing Dependent Plasticity (STDP) alters synaptic efficacy between excitatory neurons
based on the spike timing between presynaptic neuron j and postsynaptic neuron i.

∆W EE
ij = ηSTDP (xi(t)xj(t− 1)− xi(t− 1)xj(t)) (3)

where,
W EE

ij - Connection strength between excitatory neurons
ηSTDP - STDP learning rate
xj(t− 1) - Presynaptic neuron state at t− 1

xi(t) - Postsynaptic neuron state at t

Intrinsic Plasticity

Intrinsic Plasticity (IP) updates the firing threshold of excitatory neurons based on the state
of the neuron at each time step. It increases the threshold if the neuron is firing and decreases
it otherwise.

Ti(t+ 1) = Ti(t) + ηIP(xi(t)−HIP) (4)

where,
Ti(t) - Firing threshold of the neuron i at time t

ηIP - Intrinsic plasticity step size
HIP - Target firing rate of the neuron

Structural Plasticity

Structural Plasticity (SP) is responsible for creating new synapses between excitatory neurons
at a rate of about 1 connection per 10th time step.

Synaptic Scaling

Synaptic Scaling (SS) normalizes the synaptic strengths of presynaptic neurons and prevents
network activity from declining or exploding.

W EE
ij (t) = W EE

ij (t)/
∑

W EE
ij (t) (5)

Nambusubramaniyan, S., (2021). sorn: A Python package for Self Organizing Recurrent Neural Network. Journal of Open Source Software,
6(65), 3545. https://doi.org/10.21105/joss.03545

3

https://doi.org/10.21105/joss.03545

Inhibitory Spike Timing Dependent Plasticity

Inhibitory Spike Timing Dependent Plasticity (iSTDP) is responsible for controlling synaptic
strengths from the inhibitory to the excitatory network.

∆W EI
ij = ηiSTDP

(
yj(t− 1)(1− xi(t)(1 +

1

µIP
))

)
(6)

where,
W EI

ij - Synaptic strength from Inhibitory to excitatory network
ηiSTDP - Inhibitory STDP learning rate
µIP - Mean firing rate of the neuron
Note that the connection strength from excitatory to inhibitory (W IE

ij) remains fixed at the
initial state and also the connections between inhibitory neurons are not allowed.

Sample Simulation methods

Sample input
num_features = 10
time_steps = 200
inputs = numpy.random.rand(num_features,time_steps)

state_dict,E,I,R,C=Simulator.simulate_sorn(inputs=inputs,phase='plasticity',

matrices=None,noise=True,

time_steps=time_steps,ne=200,

nu=num_features)

simulate_sorn returns the dictionary of network state variables of the previous time steps,
the excitatory and inhibitory network activity of the whole simulation period, and also the
recurrent activity and the number of active connections at each time step. To continue the
simulation, load the matrices returned in the previous step as,
state_dict,E,I,R,C=Simulator.simulate_sorn(inputs=inputs,phase='plasticity',

matrices=state_dict, noise=True,

time_steps=time_steps,

ne = 200,nu=num_features)

Network Output Descriptions

state_dict - Dictionary of connection weights (‘Wee,’ ‘Wei,’ ‘Wie’) ,
Excitatory network activity ('X'),

Inhibitory network activities('Y'),

Threshold values ('Te', 'Ti')

Nambusubramaniyan, S., (2021). sorn: A Python package for Self Organizing Recurrent Neural Network. Journal of Open Source Software,
6(65), 3545. https://doi.org/10.21105/joss.03545

4

https://doi.org/10.21105/joss.03545

E - Collection of Excitatory network activity of entire simulation period
I - Collection of Inhibitory network activity of entire simulation period
R - Collection of Recurrent network activity of entire simulation period
C - List of number of active connections in the Excitatory pool at each time step

Sample Training methods
from sorn import Trainer
inputs = np.random.rand(num_features,1)

Under all plasticity mechanisms
state_dict,E,I,R,C=Trainer.train_sorn(inputs=inputs,phase='plasticity',

matrices=state_dict,

nu=num_features,time_steps=1)

Resume the training without any plasticity mechanisms

state_dict,E,I,R,C=Trainer.train_sorn(inputs=inputs,phase='training',

matrices=state_dict,

nu=num_features,time_steps=1)

To turn off any plasticity mechanisms during the simulation or training phase, you can use
the argument freeze. For example, to stop intrinsic plasticity during the training phase,

state_dict,E,I,R,C=Trainer.train_sorn(inputs=inputs,phase='plasticity',

matrices=None,noise=True,

time_steps=1,ne=200,

nu=num_features,freeze=['ip'])

The other options for freeze argument are,
stdp - Spike Timing Dependent Plasticity
ss - Synaptic Scaling
sp - Structural Plasticity
istdp - Inhibitory Spike Timing Dependent Plasticity
The simulate_sorn and train_sorn methods accepts the following keyword arguments:

kwargs Description
inputs External stimulus
phase plasticity or training
matrices state_dict to resume simulation otherwise None to intialize new

network
time_steps simulaton total time steps. For training should be 1

Nambusubramaniyan, S., (2021). sorn: A Python package for Self Organizing Recurrent Neural Network. Journal of Open Source Software,
6(65), 3545. https://doi.org/10.21105/joss.03545

5

https://doi.org/10.21105/joss.03545

kwargs Description
noise If True, Gaussian white noise will be added to excitatory field potentials
freeze To drop any given plasticity mechanism(s) among

['ip','stdp','istdp','ss', 'sp']
ne Number of Excitatory neurons in the network
nu Number of input units among excitatory neurons
network_type_ee sparse or dense connection between excitatory neurons
network_type_ei sparse or dense connection from inhibitory and excitatory neurons
network_type_ie sparse or dense connection from excitatory and inhibitory neurons
lambda_ee Connection density between excitatory networks if network type is

sparse
lambda_ei Density of connections from inhibitory to excitatory networks if network

type is sparse
lambda_ie Density of connections from inhibitory to excitatory networks if network

type is sparse
eta_stdp Hebbian learning rate of excitatory synapses
eta_inhib Hebbian learning rate synapses from inhibitory to excitatory
eta_ip Learning rate of excitatory neuron threshold
te_max Maximum of excitatory neuron threshold range
ti_max Maximum of inhibitory neuron threshold range
ti_min Minimum of inhibitory neuron threshold range
te_min Minimum of excitatory neuron threshold range
mu_ip Target Mean firing rate of excitatory neuron
sigma_ip Target Standard deviation of firing rate of excitatory neuron

Analysis functions

The sorn package also includes necessary methods to investigate network properties. A few
of the methods in the Statistics module are:

methods Description
autocorr t-lagged auto correlation between neural activity
fanofactor To verify poissonian process in spike generation of neuron(s)
spike_source_entropy Measure the uncertainty about the origin of spike from the

network using entropy
firing_rate_neuron Spike rate of specific neuron
firing_rate_network Spike rate of entire network
avg_corr_coeff Average Pearson correlation coeffecient between neurons
spike_times Time instants at which neuron spikes
spike_time_intervals Inter spike intervals for each neuron
hamming_distance Hamming distance between two network states

More details about the statistical and plotting tools in the package can be found at
(https://self-organizing-recurrent-neural-networks.readthedocs.io/en/latest/)

References
Barrett, P., Hunter, J., Miller, J. T., Hsu, J.-C., & Greenfield, P. (2005). Matplotlib–a

portable python plotting package. Astronomical Data Analysis Software and Systems XIV,
347, 91.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,

Nambusubramaniyan, S., (2021). sorn: A Python package for Self Organizing Recurrent Neural Network. Journal of Open Source Software,
6(65), 3545. https://doi.org/10.21105/joss.03545

6

self-organizing-recurrent-neural-networks.readthedocs.io
https://doi.org/10.21105/joss.03545

W. (2016). Openai gym. arXiv Preprint arXiv:1606.01540.
Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,

D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming
with NumPy. Nature, 585(7825), 357–362.

Jaeger, H. (2002). Adaptive nonlinear system identification with echo state networks. Ad-
vances in Neural Information Processing Systems, 15, 609–616.

Jaeger, H., Maass, W., & Principe, J. (2007). Special issue on echo state networks and liquid
state machines. https://doi.org/10.1016/j.neunet.2007.04.001

Lazar, A., Pipa, G., & Triesch, J. (2009). SORN: A self-organizing recurrent neural network.
Frontiers in Computational Neuroscience, 3, 23. https://doi.org/10.3389/neuro.10.019.
2009

Papa, B. D., Priesemann, V., & Triesch, J. (2017). Criticality meets learning: Criticality
signatures in a self-organizing recurrent neural network. PloS One, 12(5), 1–21. https:
//doi.org/10.1371/journal.pone.0178683

Zheng, P., Dimitrakakis, C., & Triesch, J. (2013). Network self-organization explains the
statistics and dynamics of synaptic connection strengths in cortex. PLoS Computational
Biology, 9(1), e1002848. https://doi.org/10.1371/journal.pcbi.1002848

Nambusubramaniyan, S., (2021). sorn: A Python package for Self Organizing Recurrent Neural Network. Journal of Open Source Software,
6(65), 3545. https://doi.org/10.21105/joss.03545

7

https://doi.org/10.1016/j.neunet.2007.04.001
https://doi.org/10.3389/neuro.10.019.2009
https://doi.org/10.3389/neuro.10.019.2009
https://doi.org/10.1371/journal.pone.0178683
https://doi.org/10.1371/journal.pone.0178683
https://doi.org/10.1371/journal.pcbi.1002848
https://doi.org/10.21105/joss.03545

	Summary
	Statement of need
	Library Overview
	SORN Network Model
	Plasticity Rules
	Spike Timing Dependent Plasticity
	Intrinsic Plasticity
	Structural Plasticity
	Synaptic Scaling
	Inhibitory Spike Timing Dependent Plasticity

	Sample Simulation methods
	Network Output Descriptions

	Sample Training methods
	Analysis functions

	References

