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Summary

Cellular Automata (CA) are discrete dynamical systems with a rich history (llachinski, 2001).
Introduced by John von Neumann and Stanislaw Ulam in the 1940s (Von Neumann, 1951), CA
have continued to fascinate, as their conceptual simplicity serves as a powerful microscope that
allows us to explore the nature of computation and complexity, and the origins of emergence.
Far from being an antiquated computational model, investigators are utilizing CA in novel
and creative ways, such as the incorporation with Deep Learning (Mordvintsev et al., 2020;
Nichele & Molund, 2017). Popularized and investigated by Stephen Wolfram in his book A
New Kind of Science (Wolfram, 2002), CA remain premier reminders of a common theme in
the study of the physical world: that simple systems and rules can give rise to remarkable
complexity. They are a laboratory for the study of the origins of the complexity we see in the
world around us.

CellPyLib is a Python library for working with CA. It provides a concise and simple inter-
face for defining and analyzing 1- and 2-dimensional CA. The CA can consist of discrete or
continuous states. Neighbourhood radii are adjustable, and in the 2-dimensional case, both
Moore and von Neumann neighbourhoods are supported. With CellPyLib, it is trivial to
create Elementary CA, and CA with totalistic rules, as these rules are provided as part of the
library. Additionally, the library provides a means for creating asynchronous and reversible
CA. Finally, an implementation of C. G. Langton's approach for creating CA rules using the
lambda value is provided, allowing for the exploration of complex systems, phase transitions
and emergent computation (Langton, 1990).

Utility functions for plotting and viewing the evolved CA are also provided. These tools make
it easy to visualize the results of CA evolution, and include the option of creating animations
of the evolution itself. Moreover, utility functions for computing the information-theoretic
properties of CA, such as the Shannon entropy and mutual information, are included.

Statement of need

The Python software ecosystem is lacking when it comes to Cellular Automata. A web search
reveals that while there are some projects dedicated to the simulation of CA, most are not
general-purpose, focusing only on certain CA systems, and are generally missing a substantial
test suite, hindering their future extensibility and maintainability. In short, there appears to
be a dearth of robust and flexible libraries for working with CA in Python.

Currently, many scientists choose Python as their main tool for computational tasks. Though
researchers can choose to implement CA themselves, this is error-prone, as there are some
subtleties when it comes to correctly handling issues such as boundary conditions on periodic
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lattices, or constructing von Neumann neighbourhoods with radius greater than 1, for example.
Researchers may be dissuaded from incorporating CA into their research if they are forced to
work with unfamiliar languages and technologies, or are required to devote considerable effort
to the implementation and testing of non-trivial algorithms. The availability of a user-friendly
Python library for CA will likely encourage more researchers to consider these fascinating
dynamical and computational systems. Moreover, having a standard implementation of CA in
the Python environment helps to ensure that scientific results are reproducible. CellPyLib is
a Python library aimed to meet this need, which supports the creation and analysis of models
that exist on a regular array or uniform grid, such as elementary CA, and 2D CA with Moore
or von Neumann neighbourhoods.

Researchers and students alike should find CellPyLib useful. Students and instructors can
use CellPyLib in an educational context if they would like to learn about elementary CA
and 2D CA on a uniform grid. Researchers in both the computer and physical sciences can
use CellPyLib to answer serious questions about the computational and natural worlds. For
example, the Abelian sandpile model included in the library can be used as part of a university
course on complex systems to demonstrate the phenomenon of self-organized criticality. The
same model may be used by professional physicists wishing to explore self-organized criticality
more deeply.

While CellPyLib is expected to be of interest to students, educators, and researchers, there
are certain scenarios in which alternate tools would be more appropriate. For example, if
a researcher would like to evolve CA with a very large number of cells, or for very many
iterations, in a timely fashion, then an implementation that is optimized for the specific model
in question would be more appropriate. Also, if the model is not constrained to a uniform
grid, then other solutions should be sought.

Example Usage

CellPyLib can be readily installed using pip:
$ pip install cellpylib
It has minimal dependencies, depending only on the commonly used libraries NumPy (Harris

et al., 2020) and Matplotlib (Hunter, 2007).

The following example illustrates the evolution of the Rule 30 CA, described in A New Kind
of Science (Wolfram, 2002), as implemented with Cel1PyLib:

import cellpylib as cpl
cellular_automaton = cpl.init_simple(200)
rule = lambda n, c, t: cpl.nks_rule(n, 30)

cellular_automaton = cpl.evolve(cellular_automaton, timesteps=100,
apply_rule=rule)

First, the initial conditions are instantiated using the function init_simple, which, in this
example, creates a 200-dimensional vector consisting of zeroes, except for the component in
the center of the vector, which is initialized with a value of 1. Next, the system is subjected to
evolution by calling the evolve function. The system evolves under the rule specified through
the apply_rule parameter. Any function that accepts the three arguments n, ¢ and t can
be supplied as a rule, but in this case the built-in function nks_rule is invoked to provide
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Rule 30. The CA is evolved for 100 timesteps, or 100 applications of the rule to the initial
and subsequent conditions.

During each timestep, the function supplied to apply_rule is invoked for each cell. The
n argument refers to the neighbourhood of the current cell, and consists of an array (in the
1-dimensional CA case) of the activities (i.e. states) of the cells comprising the current cell's
neighbourhood (an array with length 3, in the case of a 1-dimensional CA with radius of 1).
The c argument refers to index of the cell under consideration. It serves as a label identifying
the current cell. The t argument is an integer specifying the current timestep.

Finally, to visualize the results, the plot function can be utilized:

cpl.plot(cellular_automaton)
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Figure 1: Rule 30, as rendered with CellPyLib.

The result is rendered, as depicted in Figure 1.

Scope

While CellPyLib is a general-purpose library that allows for the implementation of a wide
variety of CA, it is important to note that CA constitute a very broad class of models. Ce
11PyLib focuses on those that are constrained to a regular array or uniform grid, such as
elementary CA, and 2D CA with Moore or von Neumann neighbourhoods.
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