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Summary

The anisotropic eikonal equation is a non-linear partial differential equation, given by{
⟨∇ϕ,D∇ϕ⟩ = 1 on Ω

ϕ(x0) = g(x0) on Γ ⊂ Ω
.

In practice, this problem is often associated with computing the earliest arrival times ϕ of a
wave from a set of given starting points x0 through a heterogeneous medium (i.e. different
velocities are assigned throughout the medium). This equation yields infinitely many weak
solutions (Evans, 2010) and can thus not be straight-forwardly solved using standard Finite
Element approaches.
fim-python implements the Fast Iterative Method (FIM), proposed in (Fu et al., 2013), purely
in Python to solve the anisotropic eikonal equation by finding its unique viscosity solution. In
this scenario, we compute ϕ on tetrahedral/triangular meshes or line networks for a given D,
x0 and g. The method is implemented both on the CPU using numba and numpy, as well as
the GPU with the help of cupy (depends on CUDA). The library is meant to be easily and
rapidly used for repeated evaluations on a mesh.
The FIM locally computes an update rule to find the path the wavefront will take through
a single element. Since the algorithm is restricted to linear elements, the path through an
element will also be a straight line. In the case of tetrahedral domains, the FIM thus tries
to find the path of the linear update from a face spanned by three vertices v1,v2,v3 to the
opposite vertex v4. Figure 1 visualizes the update. For triangles and lines, the algorithm
behaves similarly but the update origin is limited to a side or vertex respectively. The exact
equations used to solve this problem in this repository were previously described (among
others) in (Grandits et al., 2020).

Figure 1: Update inside a single tetrahedron

Two different methods are implemented in fim-python: In the Jacobi method, the above
local update rule is computed for all elements in each iteration until the change between two
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subsequent iterations is smaller than a chosen ε. This version of the algorithm is bested suited
for the GPU, since it is optimal for a SIMD (single instruction multiple data) architecture. The
active list method is more closely related to the method presented in (Fu et al., 2013): We
keep track of all vertices that require a recomputation in the current iteration on a so-called
active list which we keep up-to-date.

Comparison to other tools

There are other tools available to solve variants of the eikonal equation, but they differ in
functionality to fim-python.
scikit-fmm implements the Fast Marching Method (FMM) (Sethian, 1996), which was
designed to solve the isotropic eikonal equation (D = cI for c ∈ R and I being the identity
matrix). The library works on uniform grids, rather than meshes.
GPUTUM: Unstructured Eikonal implements the FIM in CUDA for triangulated surfaces
and tetrahedral meshes, but has no Python bindings and is designed as a command line tool
for single evaluations.

Statement of need

The eikonal equation has many practical applications, including cardiac electrophysiology,
image processing and geoscience, to approximate wave propagation through a medium. In the
example of cardiac electrophysiology (Franzone et al., 2014), the electrical activation times ϕ
are computed throughout the anisotropic heart muscle with varying conduction velocities D.
fim-python tries to wrap the FIM for CPU and GPU into an easy-to-use Python package
for multiple evaluations with a straight-forward installation over PyPI. This should provide
engineers and researchers alike with an accessible tool that allows evaluations of the eikonal
equation for general scenarios.
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