
A Fast Iterative Method Python package
Thomas Grandits1

1 Institute of Computer Graphics and Vision, TU Graz
DOI: 10.21105/joss.03641

Software
• Review
• Repository
• Archive

Editor: Juanjo Bazán
Reviewers:

• @lucaferranti
• @RobertRosca

Submitted: 13 July 2021
Published: 23 October 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The anisotropic eikonal equation is a non-linear partial differential equation, given by{
⟨∇ϕ,D∇ϕ⟩ = 1 on Ω

ϕ(x0) = g(x0) on Γ ⊂ Ω
.

In practice, this problem is often associated with computing the earliest arrival times ϕ of a
wave from a set of given starting points x0 through a heterogeneous medium (i.e. different
velocities are assigned throughout the medium). This equation yields infinitely many weak
solutions (Evans, 2010) and can thus not be straight-forwardly solved using standard Finite
Element approaches.
fim-python implements the Fast Iterative Method (FIM), proposed in (Fu et al., 2013), purely
in Python to solve the anisotropic eikonal equation by finding its unique viscosity solution. In
this scenario, we compute ϕ on tetrahedral/triangular meshes or line networks for a given D,
x0 and g. The method is implemented both on the CPU using numba and numpy, as well as
the GPU with the help of cupy (depends on CUDA). The library is meant to be easily and
rapidly used for repeated evaluations on a mesh.
The FIM locally computes an update rule to find the path the wavefront will take through
a single element. Since the algorithm is restricted to linear elements, the path through an
element will also be a straight line. In the case of tetrahedral domains, the FIM thus tries
to find the path of the linear update from a face spanned by three vertices v1,v2,v3 to the
opposite vertex v4. Figure 1 visualizes the update. For triangles and lines, the algorithm
behaves similarly but the update origin is limited to a side or vertex respectively. The exact
equations used to solve this problem in this repository were previously described (among
others) in (Grandits et al., 2020).

Figure 1: Update inside a single tetrahedron

Two different methods are implemented in fim-python: In the Jacobi method, the above
local update rule is computed for all elements in each iteration until the change between two

Grandits, T., (2021). A Fast Iterative Method Python package. Journal of Open Source Software, 6(66), 3641. https://doi.org/10.21105/joss.
03641

1

https://doi.org/10.21105/joss.03641
https://github.com/openjournals/joss-reviews/issues/3641
https://github.com/thomgrand/fim-python
https://doi.org/10.5281/zenodo.5594452
https://juanjobazan.com
https://github.com/lucaferranti
https://github.com/RobertRosca
http://creativecommons.org/licenses/by/4.0/
https://numba.pydata.org/
https://numpy.org/
https://cupy.dev/
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.21105/joss.03641
https://doi.org/10.21105/joss.03641


subsequent iterations is smaller than a chosen ε. This version of the algorithm is bested suited
for the GPU, since it is optimal for a SIMD (single instruction multiple data) architecture. The
active list method is more closely related to the method presented in (Fu et al., 2013): We
keep track of all vertices that require a recomputation in the current iteration on a so-called
active list which we keep up-to-date.

Comparison to other tools

There are other tools available to solve variants of the eikonal equation, but they differ in
functionality to fim-python.
scikit-fmm implements the Fast Marching Method (FMM) (Sethian, 1996), which was
designed to solve the isotropic eikonal equation (D = cI for c ∈ R and I being the identity
matrix). The library works on uniform grids, rather than meshes.
GPUTUM: Unstructured Eikonal implements the FIM in CUDA for triangulated surfaces
and tetrahedral meshes, but has no Python bindings and is designed as a command line tool
for single evaluations.

Statement of need

The eikonal equation has many practical applications, including cardiac electrophysiology,
image processing and geoscience, to approximate wave propagation through a medium. In the
example of cardiac electrophysiology (Franzone et al., 2014), the electrical activation times ϕ
are computed throughout the anisotropic heart muscle with varying conduction velocities D.
fim-python tries to wrap the FIM for CPU and GPU into an easy-to-use Python package
for multiple evaluations with a straight-forward installation over PyPI. This should provide
engineers and researchers alike with an accessible tool that allows evaluations of the eikonal
equation for general scenarios.

References

Evans, L. C. (2010). Partial differential equations (Second, Vol. 19, p. xxii+749). American
Mathematical Society, Providence, RI. https://doi.org/10.1090/gsm/019

Franzone, P. C., Pavarino, L. F., & Scacchi, S. (2014). Mathematical cardiac electrophysiology
(Vol. 13). Springer. https://doi.org/10.1007/978-3-319-04801-7

Fu, Z., Kirby, R., & Whitaker, R. (2013). A Fast Iterative Method for Solving the Eikonal
Equation on Tetrahedral Domains. SIAM Journal on Scientific Computing, 35(5), C473–
C494. https://doi.org/10.1137/120881956

Grandits, T., Gillette, K., Neic, A., Bayer, J., Vigmond, E., Pock, T., & Plank, G. (2020).
An inverse Eikonal method for identifying ventricular activation sequences from epicardial
activation maps. Journal of Computational Physics, 419, 109700. https://doi.org/10.
1016/j.jcp.2020.109700

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences, 93(4), 1591–1595. https://doi.org/10.
1073/pnas.93.4.1591

Grandits, T., (2021). A Fast Iterative Method Python package. Journal of Open Source Software, 6(66), 3641. https://doi.org/10.21105/joss.
03641

2

https://pypi.org/project/scikit-fmm/
https://github.com/SCIInstitute/SCI-Solver_Eikonal
https://pypi.org/
https://doi.org/10.1090/gsm/019
https://doi.org/10.1007/978-3-319-04801-7
https://doi.org/10.1137/120881956
https://doi.org/10.1016/j.jcp.2020.109700
https://doi.org/10.1016/j.jcp.2020.109700
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.21105/joss.03641
https://doi.org/10.21105/joss.03641

	Summary
	Comparison to other tools
	Statement of need
	References

