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Summary

Feature-engine is an open source Python library with the most exhaustive battery of transfor-
mations to engineer and select features for use in machine learning. Feature-engine supports
several techniques to impute missing data, encode categorical variables, transform variables
mathematically, perform discretization, remove or censor outliers, and combine variables into
new features. Feature-engine also hosts an array of algorithms for feature selection.
The primary goal of Feature-engine is to make commonly used data transformation procedures
accessible to researchers and data scientists, focusing on creating user-friendly and intuitive
classes, compatible with existing machine learning libraries, like Scikit-learn (Pedregosa et al.,
2011) and Pandas (McKinney, 2010).
Many feature transformation techniques learn parameters from data, like the values for im-
putation or the mappings for encoding. Feature-engine classes learn these parameters from
the data and store them in their attributes to transform future data. Feature-engine’s trans-
formers preserve Scikit-learn’s functionality with the methods fit() and transform() to learn
parameters from and then transform data. Feature-engine’s transformers can be incorporated
into a Scikit-learn Pipeline to streamline data transformation and facilitate model deployment,
by allowing the serialization of the entire pipeline in one pickle.
When pre-processing a dataset different feature transformations are applied to different vari-
able groups. Feature-engine classes allow the user to select which variables to transform within
each class, therefore, while taking the entire dataframe as input, only the indicated variables
are modified. Data pre-processing and feature engineering are commonly done together with
data exploration. Feature-engine transformers return dataframes as output, thus, users can
continue to leverage the power of Pandas for data analysis and visualization after transforming
the data set.
In summary, Feature-engine supports a large variety of commonly used data transformation
techniques (Box & Cox, 1964; Dong, 2015; Dror et al., 2011; Kotsiantis et al., 2006; Micci-
Barreca, 2001; Yeo & Johnson, 2000), as well as techniques that were developed in data science
competitions (Niculescu-Mizil et al., 2009), including those for feature selection (Miller et al.,
2009). Thus, Feature-engine builds upon and extends the capabilities of Python’s current
scientific computing stack and makes accessible transformations that are otherwise not easy
to find, understand or code, to data scientist and data practitioners.

Statement of need

Data scientists spend an enormous amount of time on data pre-processing and transformation
ahead of training machine learning models (Domingos, 2012). While some feature engineering
processes can be domain-specific, a large variety of transformations are commonly applied
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across datasets. For example, data scientists need to impute or remove missing values or
transform categories into numbers, to train machine learning models using Scikit-learn, the
main library for machine learning. Yet, depending on the nature of the variable and the
characteristics of the machine learning model, they may need to use different techniques.
Feature-engine gathers the most frequently used data pre-processing techniques, as well as
bespoke techniques developed in data science competitions, in a library, from which users
can pick and choose the transformation that they need, and use it just like they would use
any other Scikit-learn class. As a result, users are spared of manually creating a lot of code,
which is often repetitive, as the same procedures are applied to different datasets. In addition,
Feature-engine classes are written to production standards, which ensures classes return the
expected result, and maximizes reproducibility between research and production environments
through version control.
In the last few years, a number of open source Python libraries that support feature engineering
techniques have emerged, highlighting the importance of making feature engineering and
creation accessible and, as much as possible, automated. Among these, Featuretools (Kanter
& Veeramachaneni, 2015) creates features from temporal and relational datasets, tsfresh
(Christ et al., 2018) extracts features from time series, Category encoders (McGinnis et al.,
2018) supports a comprehensive list of methods to encode categorical variables, and Scikit-
learn (Pedregosa et al., 2011) implements a number of data transformation techniques, with
the caveat that the transformations are applied to the entire dataset, and the output are
NumPy arrays. Feature-engine extends the capabilities of the current Python’s scientific
computing stack by allowing the application of the transformations to subsets of variables
in the dataset, returning dataframes for data exploration, and supporting transformations
not currently available in other libraries, like those for outlier censoring or removal, besides
additional techniques for discretization and feature selection that were developed by data
scientist working in the industry or data science competitions.
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