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Summary
The Transformer eXplainability and eXploration (Martindale & Stewart, 2021), or TX2 soft-
ware package, is a library designed for artificial intelligence researchers to better understand
the performance of transformer models (Vaswani et al., 2017) used for sequence classification.
The tool is capable of integrating with a trained transformer model and a dataset split into
training and testing populations to produce an ipywidget (Project Jupyter Contributors, 2021)
dashboard with a number of visualizations to understand model performance with an emphasis
on explainability and interpretability. The TX2 package is primarily intended to integrate into
a workflow centered around Jupyter Notebooks (Kluyver et al., 2016), and currently assumes
the use of PyTorch (Paszke et al., 2019) and Hugging Face transformers library (Wolf et al.,
2020). The dashboard includes visualization and data exploration features to aid researchers,
including an interactive UMAP embedding graph (McInnes et al., 2018) to understand classi-
fication clusters, a word salience map that can be updated as researchers alter textual entries
in near real time, a set of tools to understand word frequency and importance based on the
clusters in the UMAP embedding graph, and a set of traditional confusion matrix analysis
tools.

Statement of Need
Transformers, although particularly effective on a wide variety of natural language processing
tasks, have the same challenge of many deep network approaches in that it is difficult to glean
insight into why certain classification decisions are made (Aken et al., 2020). Various works
have explored the value of analyzing the attention layers in order to provide explainability in
the output of a transformer network (Vig, 2019). However, analyzing attention alone can
be insufficient when attempting to gain broader insight into why a transformer is performing
a certain way with a specific dataset (Jain & Wallace, 2019). TX2 aims to address this
challenge by providing a model developer with a number of tools to explore why a certain
transformer performs in a certain way for a specific dataset. This tool can help a developer
determine, among other things, whether or not a specific transformer has gained a generalized
understanding of the semantic meaning behind textual entries in a specific dataset. It can
also help with studying the impact of language distribution shifts over time on transformer
sequence classification performance.
Existing tools, such as Google PAIR’s Language Interpretability Tool (Tenney et al., 2020), also
provide a platform to use multiple visualizations to study transformer model performance. TX2

differs from these tools with its emphasis on cluster analysis and easier customization of both
the model interaction and dashboard itself within a Jupyter Notebook. The close integration
with Jupyter Notebook is advantageous for those researchers who already rely heavily on
the tools within the Jupyter ecosystem. Like the Language Interpretability Tool, TX2 offers
a projection map with all of the data points; however it goes further in breaking down the
visual clusters and providing separate visualizations for understanding the language per cluster.
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Additionally, the TX2 design promotes easy modification or customization depending on the
researcher’s needs, as researchers can completely change the presentation order of plots within
the ipywidget and even add additional visualizations if desired.

Features
The primary visualization for the widget is a UMAP embedding graph that projects the mul-
tidimensional sequence embedding space into 2D clusters. This plots multiple controls that
can be used to understand how the sequence classifier is working, including the ability to show
or hide training data, highlight certain keywords, and focus on misclassifications. Below the
UMAP plot, the dashboard includes a set of tools for exploring textual data including a word
salience map that shows information on specific train or test data entries. The salience map
serves as a proxy for word importance and is computed by recalculating the soft classifications
of a particular entry in the corpus multiple times with each word individually removed. The
background coloring in the map indicates the degree of impact word removal has on the classi-
fication result, with a darker background highlight corresponding to greater importance. The
dashboard also includes a text entry box that is prepopulated with the text from the entry
shown in the salience map. The user can use this text box to explore the impact of word
addition or removal by modifying the entry. The change is reflected both in the salience map
plot as well as with a change in the data point in the UMAP embedding graph.
The dashboard also includes a set of visual clustering analysis tools. Any clustering algorithm
from sklearn’s (Pedregosa et al., 2011) clustering module can be used to assign clusters to the
data once it is projected into the UMAP embedding. The dashboard displays cluster labels,
along with inter-cluster word frequency, and each words’ importance on the classification
result. The salience scores for each word are calculated in aggregate for each cluster, again by
iterating with the classifier while individual words are removed. There are also some sampling
buttons that allow for a data example to be randomly pulled from a specific cluster so that it
can be examined by the entry-specific salience map tool. Finally, it is also possible to output
traditional confusion matrices as well as various evaluation scores (e.g., f1-score, accuracy,
precision) as part of the dashboard.

Integration
TX2 includes two main classes: a wrapper class and a dashboard class. The wrapper class
wraps around the transformer/classification model and acts as an interface between the dash-
board and the transformer. The wrapper is in charge of computing and caching all the
necessary data for the dashboard visualizations. The dashboard class is responsible for set-
ting up and rendering the widget layout and handling dashboard interactivity. The flow of
interactions between the TX2 library and a Jupyter Notebook can be seen in Figure 1.
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Figure 1: Flow of interactions between a Jupyter Notebook and the TX2 library.

The wrapper communicates with the transformer through a set of four functions as seen in
Figure 2. These functions include an embedding function that returns a single sequence of
embeddings for each input text, a classification function that returns the predicted output
class for each input text, a soft classification function that returns some output value for each
class for each input text, and an encoding function that converts the text into model inputs.
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Figure 2: Example of integrating a transformer with the TX2 wrapper.

The default implementation for TX2 assumes a huggingface pretrained model. If this use case
fits the purposes of the user, they can use the default implementations for these functions.
Otherwise, the user will need to redefine the functions to handle their use case while ensuring
that the new functions return the necessary data and the correct format.

Audience
The target audience for the TX2 tool are machine learning or artificial intelligence researchers
focused on natural language processing with transformers, and who are comfortable operating
within the Jupyter ecosystem for demonstration or exploration. This open-source software is
licensed under a BSD-3 clause license, is registered on DOECode, and is available on GitHub.
The package is also pip installable with pip install tx2 with Sphinx (Sphinx Team, 2021)
built documentation. Finally, linting for this project is performed using black (Python Software
Foundation, 2021).
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