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Summary

Over the past decades, the study of systems of particles has become an important part of many
research areas, from theoretical physics to applied biology and computational mathematics.
One of the main motivations in mathematical biology is the modelling of large animal societies
and the emergence of complex patterns from simple behavioral rules, e.g., flocks of birds, fish
schools, ant colonies, etc. In the microscopic world, particle systems are used to model a wide
range of phenomena, from the collective motion of spermatozoa to the anarchical development
of cancer cells. Within this perspective, there are at least three important reasons to conduct
large scale computer simulations of particle systems. First, numerical experiments are essential
to calibrate the models and test the influence of each parameter in a controlled environment.
For instance, the renowned Vicsek model (Vicsek et al., 1995) is a minimal model of flocking,
which exhibits a complex behavior, studied numerically in particular in (Chaté et al., 2008).
Secondly, particle simulations are used to check the validity of macroscopic models that
describe the statistical behavior of particle systems. These models are usually based on partial
differential equations (PDE) derived using phenomenological considerations that are often
difficult to justify mathematically (Degond et al., 2021; Degond & Motsch, 2008; Dimarco &
Motsch, 2016). Finally, inspired by models in biology, there is an ever growing literature on
the design of algorithms based on the simulation of artificial particle systems to solve tough
optimization problems (Grassi & Pareschi, 2020; Kennedy & Eberhart, 1995; Pinnau et al.,
2017; Totzeck, 2021) and to construct new more efficient Markov Chain Monte Carlo methods
(Cappé et al., 2004; Clarté et al., 2021; Del Moral, 1998, 2013; Doucet et al., 2001). The
simulation of systems of particles is also at the core of molecular dynamics (Leimkuhler &
Matthews, 2015), although the present library is not specifically written for this purpose. The
SiSyPHE library builds on recent advances in hardware and software for the efficient simulation
of large scale interacting mean-field particle systems, both on the GPU and on the CPU. The
versatile object-oriented Python interface of the library is designed for the simulation and
comparison of new and classical many-particle models of collective dynamics in mathematics
and active matter physics, enabling ambitious numerical experiments and leading to novel
conjectures and results.

Statement of need

A major difficulty in the simulation of systems of particles is the high computational cost,
typically quadratic in the number of particles, which prevents large scale experiments. The
implementation of SiSyPHE is based on recent libraries originally developed for machine learn-
ing purposes to significantly accelerate tensor (array) computations, namely the PyTorch
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package (Paszke et al., 2019) and the KeOps library (Charlier et al., 2021). On a GPU, the
SiSyPHE library speeds up both traditional Python and low-level implementations by one to
three orders of magnitude for systems with up to several millions of particles.
In addition, to the best of our knowledge, only model-specific packages such as Motsch
(2016) are available. The SiSyPHE library includes, within a common framework, the imple-
mentation of many classical models and their variants as well as recent models for which no
implementation was previously available. All the models detailed in the Example gallery of the
documentation are directly taken from the literature on collective dynamics in mathematics
and active matter physics. Moreover, the SiSyPHE library is designed in such a way that new
custom models can easily be added in order to facilite the study and comparison of models
from a research perspective.
The development of the SiSyPHE library was initially motivated by the study of body-oriented
particles (Degond et al., 2019). The (formal) derivation of a macroscopic PDE model from
the particle system has lead to a novel conjecture which postulates the existence of a class
of so-called bulk topological states in (Degond et al., 2021). The quantitative comparison
between this theoretical prediction and the numerical simulation of the particle system in
a suitable regime (with more than 106 particles) has confirmed the existence of these new
states of matter. The study of their physical properties which are observed in the numerical
experiments but not readily explained by the PDE model is an ongoing work.

A typical example

A typical model that is implemented in the SiSyPHE library is the variant of the Vicsek
model introduced by Degond & Motsch (2008) and defined by the system of 2N Stratonovich
Stochastic Differential Equations

dXi
t = c0V

i
t dt, dV i

t = σP(V i
t ) ◦ (J i

tdt+ dBi
t), (1)

where the position at time t of a particle indexed by i ∈ {1, . . . , N} is a vector Xi
t ∈ Rd and

its orientation (or velocity) is a unit vector V i
t ∈ Rd with |V i

t | = 1. The coefficient c0 > 0 is
the speed of the particles (assumed to be constant), the matrix P(V i

t ) = Id − V i
t ⊗ V i

t is the
orthogonal projection matrix on the plane orthgonal to V i

t , (Bi
t)t is an independent Brownian

motion, and σ > 0 is a diffusion coefficient which models the level of noise. The quantity
J i
t ∈ Rd is called a target; it is the orientation that particle i is trying to adopt. In the Vicsek

model introduced by Degond & Motsch (2008),
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where the kernel K : [0,+∞) → [0,+∞) is a smooth nonnegative function vanishing at
infinity which models the visual perception of the particles; in the Vicsek model, the vision of
the particles depends on the distance between them. With the target given by Equation 2,
each particle tries to adopt the average orientation of its neighbors, which is a typical flocking
behavior.
On a computer, the time-continuous system given by Equation 1 needs to be discretized first.
For the Vicsek model, a natural discretization method is the (geometric) Euler-Maruyama
scheme (Kloeden & Platen, 1992; Piggott & Solo, 2016). In general, the discretization
method depends on the model considered as illustrated in the Example gallery. Then, at each
time step, the most expensive operation is the computation of the target given by Equation 2,
which requires O(N) operations for each of the N particles. The total simulation cost is
thus O(N2T ) where T is the total number of iterations. Within the framework of the KeOps
library on which SiSyPHE is based, the computation of the target Equation 2 is called a
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kernel operation, which is efficiently carried out using a symbolic definition of the N × N
interaction matrix whose (i, j)-entry is K(|Xj

t −Xi
t |). The computation of the target is then

understood as a symbolic matrix-vector product between the interaction matrix and the vector
of orientations.
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