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Summary

PDLSM-FEM solver is a parallel implementation of coupled peridynamics least squares min-
imization and finite element method (PDLSM-FEM) in 2D and 3D using MPI parallelism.
This cross-platform solver is written in a C4++ language and includes implicit static, explicit
dynamic, and implicit dynamic solvers for structure analysis under displacement or traction
loading. PDLSM-FEM solver stores the large sparse matrix in a compressed sparse row (CSR)
format rather than a full matrix format, and solves the large linear systems of equations by
the Parallel Direct Sparse Solver (PDSS) of Intel Math Kernel Library. It writes the results in
VTK format, which can be directly and easily visualized by Paraview.

Statement of need

Many problems of fundamental importance in solid mechanics involve pre-existing and propa-
gating discontinuities such as cracks. As classical continuum theory employs spatial derivatives
in its formulation and assumes the material is continuous as it deforms, it is inherently diffi-
cult to predict discontinuous behaviors. In light of the inadequacies of the classical continuum
theory, Peridynamics (PD), which is based on non-local interactions and employs spatial in-
tegrals, was first introduced in (Stewart A. Silling, 2000) for failure analysis of materials and
structures.

PD theory has been extended from bond-based theory (Stewart A. Silling, 2000), which has a
restriction of a fixed Poisson’s ratio of 1/4, to the state-based one (S. A. Silling et al., 2007),
which has no restriction on the value of Poisson’s ratio. Both bond-based and state-based
PD theories were derived by equating the classical strain energy at a material point to that
of PD with a spherical neighborhood. However, these PD models require a surface correction
(Le & Bobaru, 2018) and a volume correction procedures to improve integration accuracy
(Seleson, 2014). To remove these two drawbacks, Madenci et al. (2019) proposed a PD least
squares minimization (PDLSM), and Liu & Xin (2021) proposed a revised non-ordinary state-
based PD. Both methods were derived by Taylor series expansion and the concept of non-local
interactions of PD. Comparing to the finite element method (FEM), PD is computationally
expensive. Thus, the authors propose a coupling model of PDLSM and FEM (PDLSM-FEM)
for taking advantage of these two methods (Liu, Xin, Ma, & Wang, 2021; Liu, Xin, & Ma,
2021), and develop the PDLSM-FEM solver in C++ environment.

PDLSM-FEM solver is user friendly and can solve the structures with uniform or non-uniform
mesh relatively fast and using less memory compared to pure PD model implementations.
It does not require surface correction (Le & Bobaru, 2018) and volume correction (Seleson,
2014). For the bond-based PD (Stewart A. Silling, 2000) and the state-based PD (S. A. Silling
et al., 2007), constraints are applied through a nonzero volume rather than on a surface,
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commonly introduced within a fictitious layer (Hu et al., 2012), and traction at boundaries is
introduced in these PD models as body forces within a layer (Madenci & Oterkus, 2014). In
the PDLSM-FEM solver, the constraints and traction boundary conditions (BCs) are treated
in an easy way similar to FEM without introducing fictitious layer. The PDLSM-FEM solver
enables two criteria only for 2D crack propagation simulations: maximum circumferential
tensile stress and maximum principal stress.

Usage and features

PDLSM-FEM is developed to perform fracture analysis of structures, which takes advantage
of both PD and FEM. It can also be used to perform conventional finite element analysis,
when the PD region of the model is shrunk to zero, which means there is no PD element.
Figure 1 illustrates the crack propagation simulation of a diagonal plate with an inclined pre-
existing crack by the PDLSM-FEM solver. As it shows, PDLSM-FEM solver captures the
crack growth path which has a good agreement with the experimental observation (Ayatollahi
& Aliha, 2009). The geometry and material properties of this example can be found in (Liu,
Xin, Ma, & Wang, 2021).

Figure 1: Simulation and experimental results of a diagonal plate: displacement u, with deformed
shape (left-top), stress o, with deformed shape (right-top), damage ¢ with underformed shape (left-
bottom), and experimental crack path (right-bottom).
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