The Journal of Open Source Software

DOI: 10.21105/joss.03671

Software
= Review 7
= Repository @
= Archive &7

Editor: Adi Singh @&
Reviewers:

= @aaronpeikert

= @hayesall

Submitted: 28 May 2021
Published: 04 May 2022

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

AdaptiveResonance.jl: A Julia Implementation of
Adaptive Resonance Theory (ART) Algorithms

Sasha Petrenko! and Donald C. Wunsch II!

1 Missouri University of Science and Technology

Summary

AdaptiveResonance.jl is a Julia package for machine learning with adaptive resonance theory
(ART) algorithms, written in the numerical computing language Julia. ART is a neurocognitive
theory of how competitive cellular networks can learn distributed patterns without supervision
through recurrent field connections, eliciting the mechanisms of perception, expectation, and
recognition (Grossberg, 1980, 2013). Engineering algorithms based upon ART are principally
in the class of competitive, incremental, single-layer, neurogenesis clustering algorithms, but
they have been adapted for multimodal learning in diverse applications.

Statement of Need

There exist many variations of algorithms built upon ART (Brito da Silva et al., 2019). Each
variation is related by utilizing recurrent connections of fields, driven by learning through
match and mismatch of distributed patterns, and though they all differ in the details of their
implementations, their algorithmic and programmatic requirements are often very similar.
Despite the relevance and successes of this class of algorithms in the literature, there does not
exist to date a unified repository of their implementations in Julia. Therefore, the purpose of
this package is to create a unified framework and repository of ART algorithms in Julia.

Target Audience

This package is principally intended as a resource for researchers in machine learning and adap-
tive resonance theory for testing and developing new ART algorithms. However, implementing
these algorithms in the Julia language brings all of the benefits of the Julia itself, such as the
speed of a low-level language such as C while having the transparency of a high-level language
such as MATLAB. Being implemented in Julia allows the package to be understood and
expanded upon by research scientists while also being able to be used in resource-demanding
production environments.

Comparison to Existing Implementations

There exist a myriad of open implementations of ART algorithms that are the result of
reproducibility efforts in the ART literature. The Boston University Department of Cognitive
and Neural Systems (CNS) Technology Laboratory software repository contains one of the
largest collections of algorithms and utilities related to ART, principally implemented in the
MATLAB and C+4+ programming languages, from demonstrations of the learning laws of ART
to implementations of ART and ARTMAP modules (Boston University Cognitive and Neural
Systems Technology Lab Software Repository, 2009 [Online]). However, this repository serves
as a codebase for the reproducibility of the software associated CNS papers rather than as a
single unified framework for ART implementations.

Petrenko, & Il. (2022). AdaptiveResonance.jl: A Julia Implementation of Adaptive Resonance Theory (ART) Algorithms. Journal of Open 1
Source Software, 7(73), 3671. https://doi.org/10.21105/joss.03671.


https://doi.org/10.21105/joss.03671
https://github.com/openjournals/joss-reviews/issues/3671
https://github.com/AP6YC/AdaptiveResonance.jl
https://doi.org/10.5281/zenodo.6506781
https://www.linkedin.com/in/adisin/
https://github.com/aaronpeikert
https://github.com/hayesall
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03671

The Journal of Open Source Software

The Missouri University of Science and Technology Applied Computational Intelligence Labora-
tory (ACIL) hosts a myriad of individual ART algorithm implementations on its public GitHub
group repository page (Missouri University of Science and Technology Applied Computational
Intelligence Laboratory GitHub Software Repository, 2022 [Online]), chiefly implemented in
the MATLAB and Python programming languages. Though these ART implementations are
designed for open use, they also principally serve the reproducibility of their associated ACIL
papers.

The ACIL group GitHub page additionally contains the NuART-Py library, which organizes a
suite of clustering and biclustering ART algorithms as a distributable package in the Python
language (Elnabarawy, 2019 [Online]). A similar package exists in the Java programming
language in a separate repository containing only fundamental ART algorithms (Chen, 2018
[Online]), and a new package in the R statistical programming language has only begun
development at the time of this writing (Steinmeister & Wunsch, 2021).

Though each of these ART software projects (and the very many and disparate implementations
of individual algorithms in the literature) combined may implement the majority of ART
algorithms relevant to modern research and engineering, together they lack cohesion in
programming language and usage. When considering ease of use and barrier to entry, many of
these projects may be difficult to utilize for those less versed in the ART literature who might
still significantly benefit from their use and understanding.

Lastly, many ART implementations exist in the MATLAB programming language due to its
popularity amongst the research scientists that have been the theory's primary clientele, which
is at the detriment to those without private MATLAB licenses in research and industry. The
Julia programming language is selected for this open-source ART package implementation due
to its syntactic ease of use and speed of development without compromising computational
efficiency due to the language’s just-in-time compilation.

Adaptive Resonance Theory

ART is originally a theory of how competitive fields of neurons interact to form stable
representations without supervision, and ART algorithms draw from this theory as a biological
inspiration for their design. It is not strictly necessary to have an understanding of the theory
to understand the use of the algorithms, but they share a common nomenclature that makes
knowledge of the former useful for the latter.

Theory

Adaptive resonance theory is a collection of neurological studies from the neuron level to the
network level (Hestenes, 1987). ART begins with a set of neural field differential equations and
procedurally tackles problems such as why sigmoidal neural activations are used, the conditions
of stability for competitive neural networks (Cohen & Grossberg, 1983), how the mammalian
visual system works (Grossberg & Huang, 2009), and the hard problem of consciousness linking
resonant states to conscious experiences (Grossberg, 2017, 2021).

Algorithms
ART algorithms are generally characterized in behavior by the following:

1. They are inherently unsupervised learning algorithms at their core, but they have been
adapted to supervised and reinforcement learning paradigms with frameworks such as
ARTMAP (Carpenter et al., 1991, 1992) and FALCON (Tan et al., 2019), respectively.

2. They are incremental learning algorithms, adjusting their weights or creating new ones
at every sample presentation.

Petrenko, & Il. (2022). AdaptiveResonance.jl: A Julia Implementation of Adaptive Resonance Theory (ART) Algorithms. Journal of Open 2
Source Software, 7(73), 3671. https://doi.org/10.21105/joss.03671.


https://doi.org/10.21105/joss.03671

The Journal of Open Source Software

3. They are neurogenesis neural networks, representing their learning by the modification
of existing prototype weights or instantiating new ones entirely.

4. They belong to the class of competitive neural networks, which compute their outputs
with more complex dynamics than feedforward activation.

Because of the breadth of the original theory and the variety of possible applications, ART-based
algorithms are diverse in their nomenclature and implementation details. Nevertheless, they
are generally structured as follows:

1. ART models typically have two layers/fields denoted F1 and F2.

2. The F1 field is the feature representation field. Most often, it is simply the input feature
sample itself (after some requisite feature preprocessing, depending on the model).

3. The F2 field is the category representation field. With some exceptions, each node in the
F2 field represents its own category. This is most easily interpreted as a weight vector
representing a prototype for a class or centroid of a cluster.

4. An activation function is used to find the order of categories “most activated” for a
given sample in F1.

5. In order of highest activation, a match function is used to compute the agreement
between the sample and the categories.

6. If the match function for a category evaluates to a value above a threshold known as
the vigilance parameter (p), the weights of that category may be updated according to a
learning rule.

7. If there is a complete mismatch across all categories, then a new category is created
according to an instantiation rule.

Implementation

In creating a unified framework for ART modules in Julia, the development of this package
faces the challenges of organizing and categorizing the designs and objectives of many different
ART algorithms, which necessitates the formalization of the distinctions between training
versus inference, batch versus incremental learning, supervised versus unsupervised learning
modes, and match versus mismatch.

Training vs Inference

All modules in the package have states that are tracked and updated during learning, and so
they have their own module constructors with options that are themselves also stateful. The
two most simple operations available on these ART modules are train! and classify for
training and inference, respectively. This package utilizes the Julia convention of appending
an exclamation point to the end of functions that modify their parameters. During training,
ART modules are allowed to mutate their internal parameters, whereas during inference, they
report their categorization of the data without allowing parameters to change.

Batch vs Incremental Learning

ART modules are generally incremental learning algorithms, meaning that they update their
parameters or conduct inference on one data sample at a time rather than in large batches.
If many samples are presented at once, batch learning is still done by incrementally learning
upon all provided samples. This package, however, accommodates batch learning without the
need to implement multiple methods by utilizing Julia's multiple dispatch system, correctly
inferring which function to use by the dimensionality of the input samples. As done in many
other machine learning methods, a single sample is denoted by a vector of features, while a set
of samples is a matrix of many features.

Petrenko, & Il. (2022). AdaptiveResonance.jl: A Julia Implementation of Adaptive Resonance Theory (ART) Algorithms. Journal of Open 3
Source Software, 7(73), 3671. https://doi.org/10.21105/joss.03671.


https://doi.org/10.21105/joss.03671

The Journal of Open Source Software

Supervised vs Unsupervised Learning

Though ART modules are generally multimodal machine learning algorithms in that they
may be designed to learn with or without prescribed labels (i.e., supervised or unsupervised),
algorithms in the ARTMAP family are expressly supervised. To accommodate this distinction,
this package organizes algorithms that are by default unsupervised but that can accept optional
labels as ART modules while distinguishing explicitly supervised modules as ARTMAP modules.
This distinction is enforced programmatically by making labels an optional argument in train!
declarations upon ART modules and a required positional argument in train! declarations
upon ARTMAP modules.

Match vs Mismatch

A match function is used in ART and ARTMAP modules to evaluate if a given sample
sufficiently aligns with a particular category for the weight to be mutated during learning or
for the category to be reported during inference. Mismatch occurs when this match function
evaluates to below the vigilance threshold for all internal categories. Complete mismatch
during learning triggers the creation of a new category. Mismatch during inference, on the
other hand, results in the module reporting an unknown category signal, which is the default
behavior for all modules by precedent in the literature.

It is sometimes desirable to report a next-best category in the case of complete mismatch,
which is referred to as the best matching unit. All modules are equipped with an option to
report the best matching unit in the case of mismatch.

Acknowledgements

This package is developed and maintained with sponsorship by the Applied Computational
Intelligence Laboratory (ACIL) of the Missouri University of Science and Technology. This
project is supported by grants from the Army Research Labs Night Vision Electronic Sensors
Directorate (NVESD), the DARPA Lifelong Learning Machines (L2M) program, Teledyne
Technologies, and the National Science Foundation. The material, findings, and conclusions
here do not necessarily reflect the views of these entities.

References

Boston university cognitive and neural systems technology lab software repository. (2009
[Online]). http://techlab.bu.edu/resources/software/C51 /index.html

Brito da Silva, L. E., Elnabarawy, I., & Wunsch, D. C. (2019). A survey of adaptive resonance
theory neural network models for engineering applications. Neural Networks, 120, 167-203.
https://doi.org/10.1016 /j.neunet.2019.09.012

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D. B. (1992).
Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of
analog multidimensional maps. IEEE Transactions on Neural Networks, 3(5), 698-713.
https://doi.org/10.1109/72.159059

Carpenter, G. A, Grossberg, S., & Reynolds, J. H. (1991). ARTMAP: Supervised real-time
learning and classification of nonstationary data by a self-organizing neural network. I[EEE
Conference on Neural Networks for Ocean Engineering, 341-342. https://doi.org/10.1016/
0893-6080(91)90012-T

Chen, X. (2018 [Online]). Java-adaptive-resonance-theory. https://github.com/chen0040/
java-adaptive-resonance-theory

Petrenko, & Il. (2022). AdaptiveResonance.jl: A Julia Implementation of Adaptive Resonance Theory (ART) Algorithms. Journal of Open 4
Source Software, 7(73), 3671. https://doi.org/10.21105/joss.03671.


http://techlab.bu.edu/resources/software/C51/index.html
https://doi.org/10.1016/j.neunet.2019.09.012
https://doi.org/10.1109/72.159059
https://doi.org/10.1016/0893-6080(91)90012-T
https://doi.org/10.1016/0893-6080(91)90012-T
https://github.com/chen0040/java-adaptive-resonance-theory
https://github.com/chen0040/java-adaptive-resonance-theory
https://doi.org/10.21105/joss.03671

SS

The Journal of Open Source Software

Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern formation and parallel
memory storage by competitive neural networks. I[EEE Transactions on Systems, Man and
Cybernetics, SMC-13(5), 815-826. https://doi.org/10.1109/TSMC.1983.6313075

Elnabarawy, . (2019 [Online]). NuART-py: A python library of adaptive theory neural networks.
https://github.com/ACIL-Group/NuART-Py

Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87(1),
1-51. https://doi.org/10.1037,/0033-295X.87.1.1

Grossberg, S. (2013). Adaptive resonance theory: How a brain learns to consciously attend,
learn, and recognize a changing world. Neural Networks, 37, 1-47. https://doi.org/10.
1016/j.neunet.2012.09.017

Grossberg, S. (2017). Towards solving the hard problem of consciousness: The varieties of
brain resonances and the conscious experiences that they support. Neural Networks, 87,
38-95. https://doi.org/10.1016/j.neunet.2016.11.003

Grossberg, S. (2021). Conscious mind, resonant brain: How each brain makes a mind. OUP
Premium Oxford University Press. ISBN: 978-0190070557

Grossberg, S., & Huang, T. R. (2009). ARTSCENE: A neural system for natural scene
classification. Journal of Vision, 9(4), 1-19. https://doi.org/10.1167/9.4.6

Hestenes, D. (1987). How the brain works: The next great scientific revolution. Maximum-
Entropy and Bayesian Spectral Analysis and Estimation Problems, 173-205. https://doi.
org/10.1007/978-94-009-3961-5_11

Missouri university of science and technology applied computational intelligence laboratory
GitHub software repository. (2022 [Online]). https://github.com/ACIL-Group

Steinmeister, L., & Wunsch, D. C. (2021). FuzzyART: An r package for ART-based clustering
FuzzyART: An r package for ART-based clustering. https://doi.org/10.13140/RG.2.2.
11823.25761

Tan, A.-H. H., Subagdja, B., Wang, D., & Meng, L. (2019). Self-organizing neural networks
for universal learning and multimodal memory encoding. Neural Networks, 120, 58-73.
https://doi.org/10.1016/j.neunet.2019.08.020

Petrenko, & Il. (2022). AdaptiveResonance.jl: A Julia Implementation of Adaptive Resonance Theory (ART) Algorithms. Journal of Open 5
Source Software, 7(73), 3671. https://doi.org/10.21105/joss.03671.


https://doi.org/10.1109/TSMC.1983.6313075
https://github.com/ACIL-Group/NuART-Py
https://doi.org/10.1037/0033-295X.87.1.1
https://doi.org/10.1016/j.neunet.2012.09.017
https://doi.org/10.1016/j.neunet.2012.09.017
https://doi.org/10.1016/j.neunet.2016.11.003
https://doi.org/10.1167/9.4.6
https://doi.org/10.1007/978-94-009-3961-5_11
https://doi.org/10.1007/978-94-009-3961-5_11
https://github.com/ACIL-Group
https://doi.org/10.13140/RG.2.2.11823.25761
https://doi.org/10.13140/RG.2.2.11823.25761
https://doi.org/10.1016/j.neunet.2019.08.020
https://doi.org/10.21105/joss.03671

	Summary
	Statement of Need
	Target Audience
	Comparison to Existing Implementations

	Adaptive Resonance Theory
	Theory
	Algorithms

	Implementation
	Training vs Inference
	Batch vs Incremental Learning
	Supervised vs Unsupervised Learning
	Match vs Mismatch

	Acknowledgements
	References

