
ogs6py and VTUinterface: streamlining OpenGeoSys
workflows in Python
Jörg Buchwald∗1, 2, Olaf Kolditz1, 3, 4, and Thomas Nagel2, 4

1 Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany 2 Technische Universität
Bergakademie Freiberg, Germany 3 Technische Universität Dresden, Germany 4 TUBAF-UFZ
Center for Environmental Geosciences, Germany

DOI: 10.21105/joss.03673

Software
• Review
• Repository
• Archive

Editor: Leonardo Uieda
Reviewers:

• @cpgr
• @TobbeTripitaka
• @akaszynski

Submitted: 31 May 2021
Published: 21 November 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

We introduce two new Python modules that facilitate the pre- and post-processing of finite
element calculations. ogs6py is a Python interface for the open-source package OpenGeoSys
(Bilke et al., 2019), a finite element code for simulation of multi-field processes in fractured
porous media. Modeling workflows can be further streamlined in Jupyter Notebooks (Kluyver
et al., 2016) using the newly developed VTUinterface. The use of the modules is demon-
strated with common workflow operations, including parameter variations, setting boundary
conditions, changing solver settings, verification of simulation results by comparison to ana-
lytical solutions, set-up and evaluation of ensemble runs, and convenient analysis of results by
line plots, time series, or transient contour plots.

Statement of need

Python has become a widely used framework for scientific data analysis and modeling. The
development is driven by ease of use and flexibility, the vast modular ecosystem including
powerful plotting libraries, and the Jupyter Notebook technology. The attractiveness of Python
is not limited to post-processing; pre-processing tasks can be simply conducted, using packages
such as the Python wrapper for GMSH (Geuzaine & Remacle, 2009) or the tool meshio
(Schlömer et al., 2021). While many existing open-source tools force the user to learn a new
syntax for interacting with the software, Python bindings allow control in a general language
and thus are more accessible for a wider community of users.
In this contribution, we address interaction with the open-source code OpenGeoSys (OGS)
(Bilke et al., 2019) version 6, aiming to facilitate both pre-and post-processing workflows with
Python. This aim was partly inspired by the desire to design, control and evaluate ensemble
runs (Buchwald et al., 2020; Chaudhry et al., 2021) but has now taken on a wider perspective
for general usability. A similar Python interface “ogs5py” exists for OGS version 5 (Müller et
al., 2021); however, conceptual differences between the versions, for example, the use of XML
input files, required an entirely new package to be built from scratch.
The standard output format of OpenGeoSys is VTK (W. Schroeder et al., 2006) unstructured
grid files (VTU) as time slices stacked together by a PVD file. These can be analyzed using
Paraview (Ahrens et al., 2005), a Python wrapper for VTK (W. J. Schroeder et al., 2000),
or visualization tools like PyVista (Sullivan & Kaszynski, 2019) or Mayavi (Ramachandran
& Varoquaux, 2011). However, a finite-element-modeller’s bread and butter business often
include extracting single- or multiple point time-series data. The direct use of the VTK library

∗corresponding author

Buchwald et al., (2021). ogs6py and VTUinterface: streamlining OpenGeoSys workflows in Python. Journal of Open Source Software, 6(67),
3673. https://doi.org/10.21105/joss.03673

1

https://doi.org/10.21105/joss.03673
https://github.com/openjournals/joss-reviews/issues/3673
https://github.com/joergbuchwald/joss_ogs6py_VTUinterface
https://doi.org/10.5281/zenodo.5705727
https://www.leouieda.com
https://github.com/cpgr
https://github.com/TobbeTripitaka
https://github.com/akaszynski
http://creativecommons.org/licenses/by/4.0/
https://github.com/joergbuchwald/ogs6py
https://github.com/joergbuchwald/VTUinterface
https://doi.org/10.21105/joss.03673

is quite cumbersome for such tasks, especially when interpolation is required. The mentioned
Python packages focus on visualization aspects, and except for Paraview, to our knowledge,
do not have file support for PVD files or time-series data (Aboufirass, 2020; Sullivan, 2019).

Features

ogs6py allows creating complete OGS configuration files from scratch, altering existing files,
running simulations and parsing OGS log files. The following example demonstrates some basic
functionalities. The complete example demonstrating a typical ogs6py/VTUinterface workflow
on a coupled thermo-hydro-mechanical (THM) problem of a tunnel excavation followed by
the emplacement of a heat-emitting canister can be found in a Jupyter notebook located in
the project repository.
An instance of OGS is created, an existing project file is imported, and an output file is
specified:

model = OGS(INPUT_FILE="tunnel.prj", PROJECT_FILE="tunnel_exc.prj")

A project file can be altered by commands for adding blocks, removing or replacing parameters:

model.replace_phase_property(mediumid=0, phase="Solid",
name="thermal_expansivity", value=a_s)

or

model.replace_text("tunnel_exc", xpath="./time_loop/output/prefix")

The project file can be written to disk:

model.write_input()

and OGS can be executed by calling the run_model() method:

model.run_model(path="~/github/ogs/build_mkl/bin",
logfile="excavation.log")

OGS produces PVD and VTU files that can be handled with VTUinterface:

pvdfile = vtuIO.PVDIO("tunnel_exc.pvd", dim=2)

One of the most powerful features of VTUinterface is the ability to deal with PVD files as
time-series data. For example, the following command reads in the VTU point field “pressure”
at point “pt0,” defined in a dictionary, using nearest neighbour interpolation.

excavation_curve = pvdfile.read_time_series("pressure",
interpolation_method="nearest", pts={"pt0": (0.0,0.0,0)})

The result can directly be plotted using matplotlib (Figure 1). The time axis can be retrieved
from the PVD file as well.

Buchwald et al., (2021). ogs6py and VTUinterface: streamlining OpenGeoSys workflows in Python. Journal of Open Source Software, 6(67),
3673. https://doi.org/10.21105/joss.03673

2

https://github.com/joergbuchwald/joss_ogs6py_VTUinterface/blob/master/demo/paper_ogs6py_vtuio.ipynb
https://doi.org/10.21105/joss.03673

plt.plot(pvdfile.timesteps, excavation_curve["pt0"] / 1e6)
plt.xlabel("t / d")
plt.ylabel("p / MPa");

Figure 1: Plots demonstrating the usage of VTUinterface: Deconfinement curve extracted as time
series from a PVD file of excavation simulation (left). Contour plot of pressure distribution generated
with VTUinterface and matplotlibs tricontourf() shows thermal pressurization during the heating
phase (right).

Figure 2: Spatial pressure distribution generated with VTUinterface from a linear point set array using
three different grid interpolation methods (left). Relative convergence plot showing the numerical
behaviour over ten time steps extracted using the log file parser of ogs6py (right).

This brief overview shows only some of the functionalities coming with ogs6py and VTUinter-
face. Further developments will focus on extending functionalities focusing on built-in checks
to ensure that only valid input files are generated.

Technical Details

ogs6py requires python 3.8 or above and uses lxml (Behnel et al., 2005) to process OGS6
input files and uses the subprocess module to run OGS. Furthermore, pandas (McKinney &
others, 2010) is required for holding OGS log file data. VTUinterface requires python 3.8 or
above and uses the python wrapper for VTK to access VTU files and lxml for PVD files. In
addition to VTK’s own interpolation functionalities, we use pandas and SciPy (Virtanen et
al., 2020) for interpolation.

Buchwald et al., (2021). ogs6py and VTUinterface: streamlining OpenGeoSys workflows in Python. Journal of Open Source Software, 6(67),
3673. https://doi.org/10.21105/joss.03673

3

https://lxml.de/
https://pandas.pydata.org/
https://vtk.org/
https://scipy.org/
https://doi.org/10.21105/joss.03673

Applications

Both of the packages introduced are relatively new, being only 1 to 2 years old. However,
the adoption process in the OpenGeoSys community is gearing up. For example, a YouTube
video was published explaining their use; both tools are also used for teaching at the TU
Bergakademie Freiberg and they were also extensively utilized in two recent peer-reviewed
publications (Buchwald et al., 2020, 2021).

Acknowledgements

We acknowledge contributions from Tom Fischer, Dmitry Yu. Naumov, Dominik Kern and
Sebastian Müller during the genesis of this project. The funding through the iCROSS-Project
(Integrity of nuclear waste repository systems – Cross-scale system understanding and analysis)
by the Federal Ministry of Research and Education (BMBF, grant number 02NUK053E) and
Helmholtz Association (Helmholtz-Gemeinschaft e.V.) through the Impulse and Networking
Funds (grant number SO-093) is greatly acknowledged. This work was in part funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number
NA1528/2-1.

References

Aboufirass, A. (2020). PyVista issue 294: Time series data support in pyvista. In GitHub
repository issue. GitHub. https://github.com/pyvista/pyvista-support/issues/294

Ahrens, J., Geveci, B., & Law, C. (2005). Paraview: An end-user tool for large data visualiza-
tion. The Visualization Handbook, 717(8). https://doi.org/10.1016/b978-012387582-2/
50038-1

Behnel, S., Faassen, M., & Bicking, I. (2005). Lxml: XML and HTML with python. Lxml.
Bilke, L., Flemisch, B., Kalbacher, T., Kolditz, O., Helmig, R., & Nagel, T. (2019). Develop-

ment of Open-Source Porous Media Simulators: Principles and Experiences. Transport in
Porous Media, 130(1), 337–361. https://doi.org/10.1007/s11242-019-01310-1

Buchwald, J., Chaudhry, A. A., Yoshioka, K., Kolditz, O., Attinger, S., & Nagel, T. (2020).
DoE-based history matching for probabilistic uncertainty quantification of thermo-hydro-
mechanical processes around heat sources in clay rocks. International Journal of Rock
Mechanics and Mining Sciences, 134(May), 104481. https://doi.org/10.1016/j.ijrmms.
2020.104481

Buchwald, J., Kaiser, S., Kolditz, O., & Nagel, T. (2021). Improved predictions of thermal
fluid pressurization in hydro-thermal models based on consistent incorporation of thermo-
mechanical effects in anisotropic porous media. International Journal of Heat and Mass
Transfer, 172, 121127. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121127

Chaudhry, A. A., Buchwald, J., & Nagel, T. (2021). Local and global spatio-temporal sensi-
tivity analysis of thermal consolidation around a point heat source. International Journal
of Rock Mechanics and Mining Sciences, 139(June 2020), 104662. https://doi.org/10.
1016/j.ijrmms.2021.104662

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with
built-in pre-and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579

Buchwald et al., (2021). ogs6py and VTUinterface: streamlining OpenGeoSys workflows in Python. Journal of Open Source Software, 6(67),
3673. https://doi.org/10.21105/joss.03673

4

https://www.youtube.com/watch?v=eihNKjK-I-s
https://www.youtube.com/watch?v=eihNKjK-I-s
https://github.com/pyvista/pyvista-support/issues/294
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1007/s11242-019-01310-1
https://doi.org/10.1016/j.ijrmms.2020.104481
https://doi.org/10.1016/j.ijrmms.2020.104481
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121127
https://doi.org/10.1016/j.ijrmms.2021.104662
https://doi.org/10.1016/j.ijrmms.2021.104662
https://doi.org/10.1002/nme.2579
https://doi.org/10.21105/joss.03673

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J. B., Grout, J., Corlay, S., & others. (2016). Jupyter notebooks-a publishing
format for reproducible computational workflows. (Vol. 2016). https://doi.org/10.3233/
978-1-61499-649-1-87

McKinney, W., & others. (2010). Data structures for statistical computing in python. Pro-
ceedings of the 9th Python in Science Conference, 445, 51–56. https://doi.org/10.25080/
Majora-92bf1922-00a

Müller, S., Zech, A., & Heße, F. (2021). ogs5py: A python-API for the OpenGeoSys 5
scientific modeling package. Groundwater, 59(1), 117–122.

Ramachandran, P., & Varoquaux, G. (2011). Mayavi: 3D visualization of scientific data.
Computing in Science & Engineering, 13(2), 40–51. https://doi.org/10.1109/mcse.2011.
35

Schlömer, N., McBain, G. D., Luu, K., Tsolakis, C., Li, T., Keilegavlen, E., Ferrándiz, V.
M., Barnes, C., Lukeš, V., Dalcin, L., Jansen, M., Wagner, N., Gupta, A., Müller, S.,
Woodsend, B., Krande, Schwarz, L., Blechta, J., Christovasilis, I. P., … Cereijo, I. (2021).
Nschloe/meshio: none (Version v0.1.5) [Computer software]. Zenodo. https://doi.org/
10.5281/zenodo.4745399

Schroeder, W. J., Avila, L. S., & Hoffman, W. (2000). Visualizing with VTK: A tutorial. IEEE
Computer Graphics and Applications, 20(5), 20–27. https://doi.org/10.1109/38.865875

Schroeder, W., Martin, K., & Lorensen, B. (2006). The Visualization Toolkit–An Object-
Oriented Approach To 3D Graphics (Fourth). Kitware, Inc.

Sullivan, C. (2019). PyVista issue 414: Add .pvd reader. In GitHub repository issue. GitHub.
https://github.com/pyvista/pyvista/issues/414

Sullivan, C., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a
streamlined interface for the visualization toolkit (VTK). Journal of Open Source Software,
4(37), 1450. https://doi.org/10.21105/joss.01450

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in python. Nature Methods, 17(3), 261–
272. https://doi.org/10.1038/s41592-019-0686-2

Buchwald et al., (2021). ogs6py and VTUinterface: streamlining OpenGeoSys workflows in Python. Journal of Open Source Software, 6(67),
3673. https://doi.org/10.21105/joss.03673

5

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/mcse.2011.35
https://doi.org/10.1109/mcse.2011.35
https://doi.org/10.5281/zenodo.4745399
https://doi.org/10.5281/zenodo.4745399
https://doi.org/10.1109/38.865875
https://github.com/pyvista/pyvista/issues/414
https://doi.org/10.21105/joss.01450
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03673

	Summary
	Statement of need
	Features
	Technical Details
	Applications
	Acknowledgements
	References

