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Summary

Gravity is important in a wide variety of science problems. In particular, questions in astro-
physics nearly all involve gravity, and can have large (≫ 104) numbers of gravitating masses,
such as the stars in a cluster or galaxy, or the discrete fluid elements in a hydrodynamics
simulation. Often the gravitational field of such a large number of masses can be too compu-
tationally expensive to compute by directly summing the contribution of every single element
at every point of interest.
pytreegrav is a multi-method Python package for computing gravitational fields and poten-
tials. It includes an exact direct-summation (“brute force”) solver and a fast, approximate
tree-based method that can be orders of magnitude faster than the naïve method. It can
compute fields and potentials from arbitrary particle distributions at arbitrary points, with
arbitrary softening/smoothing lengths, and is parallelized with OpenMP.

Statement of need

The problem addressed by pytreegrav is the following: given an arbitrary set of “source”
masses mi with 3D coordinates xi, and optionally each having a finite spatial extent hi

(the softening radius), one would like to compute the gravitational potential Φ and/or the
gravitational field g at an arbitrary set of “target” points in space yi. A common application for
this is N-body simulations (wherein yi = xi). It is also often useful for analyzing simulation
results after the fact – Φ and g are sometimes not saved in simulation outputs, and even
when they are it is often useful to analyze the gravitational interactions between specific
subsets of the mass elements in the simulation. Computing g is also important for generating
equilibrium initial conditions for N-body simulations (Volker Springel & White, 1999; Yurin &
Springel, 2014), and for identifying interesting gravitationally-bound structures such as halos,
star clusters, and giant molecular clouds (Behroozi et al., 2013; Grudić et al., 2018; Guszejnov
et al., 2020).
Many gravity simulation codes (or multi-physics simulation codes including gravity) have
been written that address the problem of gravity computation in a variety of ways for their
own internal purposes (Aarseth, 2003; Dehnen & Read, 2011). However, pykdgrav (the
precursor of pytreegrav) was the first Python package to offer a generic, modular, trivially-
installable gravity solver that could be easily integrated into any other Python code, using the
fast, approximate tree-based Barnes & Hut (1986) method to be practical for large particle
numbers. pykdgrav used a KD-tree implementation accelerated with numba (Lam et al.,
2015) to achieve high performance in the potential/field evaluation, however the prerequisite
tree-building step had relatively high overhead and a very large memory footprint, because
the entire dataset was redundantly stored at every level in the tree hierarchy. This made
it difficult to scale to various practical research problems, such as analyzing high-resolution
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galaxy simulations (Gurvich et al., 2020). pytreegrav is a full refactor of pykdgrav that
addresses these shortcomings with a new octree implementation, with drastically reduced
tree-build time and memory footprint, and a more efficient non-recursive tree traversal for
field summation. This makes it suitable for post-processing datasets from state-of-the-art
astrophysics simulations, with upwards of 108 particles in the region of interest.

Methods

pytreegrav can compute Φ and g using one of two methods: by “brute force” (explcitly
summing the field of every particle, which is exact to machine precision), or using the fast,
approximate Barnes & Hut (1986) tree-based method (which is approximate, but much faster
for large particle numbers). In N -body problems where the fields at all particle positions must
be known, the cost of the brute-force method scales as ∝ N2, while the cost of the tree-based
method scales less steeply, as ∝ N logN .

Figure 1: Wall-clock time per particle running pytreegrav on a sample of N particles from a
Plummer (1911) distribution for various N . Test was run on an Intel i9 9900K workstation on a
single core (left) and in parallel on 16 logical cores (right).

The brute-force methods are often fastest for small (< 103 particle) point sets because they
lack the overheads of tree construction and traversal, while the tree-based methods will typi-
cally be faster for larger datasets because they reduce the number of floating-point operations
required. Both methods are optimized with the numba LLVM JIT compiler (Lam et al., 2015),
and the basic Accel and Potential front-end functions will automatically choose the method
is likely to be faster, based on this heuristic crossover point of 103 particles. Both methods
can also optionally be parallelized with OpenMP, via the numba @njit(parallel=True)
interface.
The implementation of the tree build and tree-based field summation largely follows that of
GADGET-2 (V. Springel, 2005). Starting with an initial cube enclosing all particles, particles
are inserted into the tree one at a time. Nodes are divided into 8 subnodes until each subnode
contains at most one particle. The indices of the 8 subnodes of each node are stored for an
initial recursive traversal of the completed tree, but an optimized tree traversal only needs to
know the first subnode (if the node is to be refined) and the index of the next branch of the
tree (if the field due to the node is summed directly), so these indices are recorded in the initial
recursive tree traversal, and the 8 explicit subnode indices are then deleted, saving memory
and removing any empty nodes from consideration. Once these “next branch” and “first
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subnode” indices are known, the tree field summations can be done in a single while loop
with no recursive function calls, which generally improves performance and memory usage.
The field summation itself uses the Barnes & Hut (1986) geometric opening criterion, with
improvements suggested by Dubinski (1996): for a node of side length L with centre of mass
located at distance r from the target point, its contribution is summed using the monopole
approximation (treating the whole node as a point mass) only if r > L/Θ+ δ, where Θ = 0.7
by default (giving ∼ 1% RMS error in g), δ is the distance from the node’s geometric center to
its center of mass. If the conditions for approximation are not satisfied, the node’s subnodes
are considered in turn, until the field contribution of all mass within the node is summed.
pytreegrav supports gravitational softening by assuming the mass distribution of each par-
ticle takes the form of a standard M4 cubic spline kernel, which is zero beyond the softening
radius h (outside which the field reduces to that of a point mass). Explicit expressions for
this form of the softened gravitational potential and field are given in Hopkins (2015). h is
allowed to vary from particle to particle, and when summing the field the larger of the source
or the target softening is used (symmetrizing the force between overlapping particles). When
softenings are nonzero, the largest softening hmax of all particles in a node is stored, and a
node is always opened in the field summation if r < 0.6L + max (htarget, hmax) + δ, where
htarget is the softening of the target particle where the field is being summed. This ensures
that any interactions between physically-overlapping particles are summed directly with the
softening kernel.
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