
Devicely: A Python package for reading, timeshifting
and writing sensor data
Ariane Sasso∗1, Jost Morgenstern1, Felix Musmann1, and Bert Arnrich1

1 Digital Health Center, Hasso Plattner Institute, University of Potsdam
DOI: 10.21105/joss.03679

Software
• Review
• Repository
• Archive

Editor: Prashant K Jha
Reviewers:

• @luciorq
• @djmitche

Submitted: 24 August 2021
Published: 14 October 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Wearable devices can track a multitude of parameters such as heart rate, body temperature,
blood oxygen saturation, acceleration, blood glucose and many more (Kamišalić et al., 2018).
Moreover, they are becoming increasingly popular with a steep increase in market presence in
2020 alone (IDC, 2020). Applications for wearable devices vary from tracking cardiovascular
risks (Bayoumy et al., 2021) to identifying COVID-19 onset (Mishra et al., 2020). Therefore,
there is a great need for scientists to easily go through data acquired from different wearables
and to be able to share them while protecting user privacy. In order to solve this problem and
empower scientists working with biosignals, we developed the devicely package. It processes
the data into a tabular format and contains tools for data de-identification. It allows scientists
to focus on what they want: the analysis of biosignals guided by privacy principles.

Related Work
The first example of a package working with wearable data is mhealthtools (Snyder et al.,
2020), which is developed in R and focuses on extracting features from sensors such as inertial
measurement units (IMUs). Its main difference from devicely is firstly the language (R versus
Python) and secondly their complementary nature. Mhealthtools offers functionalities for
feature extraction and devicely is intended to help users in a prior step by reading and writing
data from wearables into standardized formats.
There are also packages developed in Python, such as SleepPy (Christakis et al., 2019) which
uses raw accelerometer data for assessing sleep quantity and quality. The HRV (Bartels &
Peçanha, 2020) package uses CSV and text files or Python iterables such as lists to generate
features related to heart rate variability (HRV). GaitPy (Czech & Patel, 2019) accepts input
data in a customizable format and is mainly used to extract features for gait analysis. There-
fore, packages such as SleepPy, HRV and GaitPy could also be used in a following step to
extract features from the output generated by devicely.
FLIRT (Föll et al., 2021) and wearablecompute (Bent, 2020) are packages that provide ways for
reading data from specific wearables such as Empatica E4. They also include functionalities to
extract features from electrodermal activity (EDA), acceleration and HRV. The main difference
from FLIRT and wearablecompute to devicely is the focus on feature extraction versus privacy
and data sharing. FLIRT and wearablecompute read the data for extracting features, while
devicely aims to provide users with a way to read the data, de-identify them as necessary and
write them back in a specified format. In this way, researchers can ensure even more data
privacy and use the data easily for further analysis and sharing.

∗corresponding author

Sasso et al., (2021). Devicely: A Python package for reading, timeshifting and writing sensor data. Journal of Open Source Software, 6(66),
3679. https://doi.org/10.21105/joss.03679

1

https://doi.org/10.21105/joss.03679
https://github.com/openjournals/joss-reviews/issues/3679
https://github.com/hpi-dhc/devicely/
https://doi.org/10.5281/zenodo.5243494
https://prashjha.github.io/
https://github.com/luciorq
https://github.com/djmitche
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03679


Statement of need
Every wearable vendor has a different data format and reading them is usually a challenge for
scientists. Therefore, in order for researchers to be able to use different sensor data in an easy
and friendly way we developed the devicely package. The package also contains two methods
to help with data de-identification, one is called timeshift and the other is a write method. The
idea behind them is that researchers can timeshift all their time series data to a different time
from the one the actual experiments occurred and then write this new de-identified dataset
back to the original or a similar data format. This will empower scientists to maintain user
privacy and hopefully share more data to increase research reproducibility.

Design
Different wearables provide incompatible data formats which require specific preprocessing
steps. However, it should be easy for scientists to add data from a new wearable to an
existing pipeline and easy for developers to add a new wearable to the devicely package. To
achieve both, devicely encapsulates data preparation for each wearable behind three common
methods: read, timeshift and write.
After reading, the data is accessible through the reader in common formats such as Pandas
DataFrames. De-identification is achieved by timeshifting the data, either by providing a
shifting interval or randomly. For writing back de-identified data, devicely focuses on keeping
a format that can be read again using the same reader class. In almost all cases, this is the
same format as the one the wearable originaly provides. This enables sharing data with the
community while maintaining user privacy.

Functionalities
All reader classes support three core functions: reading data created by a wearable, timeshift-
ing them and writing them back. To read data the corresponding reader class can be initial-
ized using as a parameter a path to the data created by the wearable. After reading, data
can be accessed through the reader in convenient formats such as dictionaries and Pandas
DataFrames.
After creating a reader object the method timeshift can be applied upon it. This assures
de-identification by shifting all time-related data points. To control the shifting interval, a
parameter can be provided to timeshift. If no parameter is provided, the data is shifted by a
random time interval to the past. The timeshifted data can be written back using the write
method.
For all wearables, the written data can be read again using the same reader class. Figure 1
depicts the class structure of the devicely package and serves as a guide for future implemen-
tation.

Sasso et al., (2021). Devicely: A Python package for reading, timeshifting and writing sensor data. Journal of Open Source Software, 6(66),
3679. https://doi.org/10.21105/joss.03679

2

https://doi.org/10.21105/joss.03679


Figure 1: On the left side, the structure of the files in the devicely package is depicted. Each device
should have a separate file. On the right side at the top we show how to import a class from a
device file into __init__.py. At the right bottom side there is an example of one device class and its
methods.

Availability
The software can be obtained through the Python Package Index (PyPI), Conda-forge, Zenodo
and on GitHub under the MIT License.

Mention
This package was used in the following paper:
Morassi Sasso A. et al. (2020) HYPE: Predicting Blood Pressure from Photoplethysmograms
in a Hypertensive Population. In: Michalowski M., Moskovitch R. (eds) Artificial Intelligence
in Medicine. AIME 2020. Lecture Notes in Computer Science, vol 12299. Springer, Cham.
https://doi.org/10.1007/978-3-030-59137-3_29
GitHub Repository

Acknowledgements
We acknowledge contributions from Arpita Kappattanavar, Bjarne Pfitzner, Harry Freitas da
Cruz, Lin Zhou, Pascal Hecker, Philipp Hildebrandt and Sidratul Moontaha during the genesis
and testing of this package.

References
Bartels, R., & Peçanha, T. (2020). HRV: A pythonic package for heart rate variability analysis.

Journal of Open Source Software, 5(51), 1867. https://doi.org/10.21105/joss.01867
Bayoumy, K., Gaber, M., Elshafeey, A., Mhaimeed, O., Dineen, E. H., Marvel, F. A., Martin,

S. S., Muse, E. D., Turakhia, M. P., Tarakji, K. G., & Elshazly, M. B. (2021). Smart

Sasso et al., (2021). Devicely: A Python package for reading, timeshifting and writing sensor data. Journal of Open Source Software, 6(66),
3679. https://doi.org/10.21105/joss.03679

3

https://pypi.org/project/devicely
https://github.com/conda-forge/devicely-feedstock
https://zenodo.org/record/5243494
https://github.com/hpi-dhc/devicely
https://doi.org/10.1007/978-3-030-59137-3_29
https://github.com/arianesasso/aime-2020
https://doi.org/10.21105/joss.01867
https://doi.org/10.21105/joss.03679


wearable devices in cardiovascular care: where we are and how to move forward. Nature
Reviews Cardiology. https://doi.org/10.1038/s41569-021-00522-7

Bent, B. (2020). Wearablecompute is an open source python package containing over 50
data and domain-driven features. DBDP (Digital Biomarker Discovery Pipeline). https:
//github.com/brinnaebent/wearablecompute

Christakis, Y., Mahadevan, N., & Patel, S. (2019). SleepPy: A python package for sleep
analysis from accelerometer data. Journal of Open Source Software, 4(44), 1663. https:
//doi.org/10.21105/joss.01663

Czech, M. D., & Patel, S. (2019). GaitPy: An open-source python package for gait analysis
using an accelerometer on the lower back. Journal of Open Source Software, 4(43), 1778.
https://doi.org/10.21105/joss.01778

Föll, S., Maritsch, M., Spinola, F., Mishra, V., Barata, F., Kowatsch, T., Fleisch, E., &
Wortmann, F. (2021). FLIRT: A Feature Generation Toolkit for Wearable Data. Computer
Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2021.106461

IDC. (2020). Shipments of Wearable Devices Leap to 125 Million Units, Up 35.1% in the Third
Quarter, According to IDC. https://www.idc.com/getdoc.jsp?containerId=prUS47067820

Kamišalić, A., Fister, I., Turkanović, M., & Karakatič, S. (2018). Sensors and functionalities
of non-invasive wrist-wearable devices: A review. Sensors (Switzerland), 18(6). https:
//doi.org/10.3390/s18061714

Mishra, T., Wang, M., Metwally, A. A., Bogu, G. K., Brooks, A. W., Bahmani, A., Alavi, A.,
Celli, A., Higgs, E., Dagan-Rosenfeld, O., Fay, B., Kirkpatrick, S., Kellogg, R., Gibson, M.,
Wang, T., Hunting, E. M., Mamic, P., Ganz, A. B., Rolnik, B., … Snyder, M. P. (2020).
Pre-symptomatic detection of COVID-19 from smartwatch data. Nature Biomedical Engi-
neering, 4(12), 1208–1220. https://doi.org/10.1038/s41551-020-00640-6

Snyder, P., Tummalacherla, M., Perumal, T., & Omberg, L. (2020). Mhealthtools: A modular
r package for extracting features from mobile and wearable sensor data. Journal of Open
Source Software, 5(47), 2106. https://doi.org/10.21105/joss.02106

Sasso et al., (2021). Devicely: A Python package for reading, timeshifting and writing sensor data. Journal of Open Source Software, 6(66),
3679. https://doi.org/10.21105/joss.03679

4

https://doi.org/10.1038/s41569-021-00522-7
https://github.com/brinnaebent/wearablecompute
https://github.com/brinnaebent/wearablecompute
https://doi.org/10.21105/joss.01663
https://doi.org/10.21105/joss.01663
https://doi.org/10.21105/joss.01778
https://doi.org/10.1016/j.cmpb.2021.106461
https://www.idc.com/getdoc.jsp?containerId=prUS47067820
https://doi.org/10.3390/s18061714
https://doi.org/10.3390/s18061714
https://doi.org/10.1038/s41551-020-00640-6
https://doi.org/10.21105/joss.02106
https://doi.org/10.21105/joss.03679

	Summary
	Related Work
	Statement of need
	Design
	Functionalities
	Availability
	Mention
	Acknowledgements
	References

