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Summary
Machine learning models have gained interest from materials researchers for their ability to
predict materials’ properties accurately and faster than first-principles calculations based on
physical laws, particularly for complex systems with many possible configurations (Butler et
al., 2018; Ramprasad et al., 2017; Xue et al., 2016). In particular, neural networks (NNs) have
been shown to achieve predictive accuracies within the threshold of “chemical accuracy” (Chen
et al., 2019; Faber et al., 2017; Schütt et al., 2018).

However, most current implementations of NNs for materials property prediction lack uncer-
tainty quantification, a measure of the confidence of a prediction. This is especially detrimental
to a machine learning model, as its reliability is contingent upon the existence of “similar”
materials in the training data set. To the end user, there is no easy way to tell whether this is
the case.

Statement of need
UnlockNN provides an API to add uncertainty quantification to Keras-based models and
comes packaged with a specific implementation for compatibility with MEGNet (Chen et al.,
2019), which is a graph NN implementation for materials property prediction that has achieved
state-of-the-art accuracy on many benchmark tasks (Dunn et al., 2020). The package is
designed for materials and chemistry researchers to improve their models’ reliability and identify
the domain(s) of materials on which the models can perform well.

This uncertainty quantification is achieved by supplanting the output layer of the model with a
variational Gaussian process (VGP) (Dillon et al., 2017; Hensman et al., 2013): a modification
of a Gaussian process (GP) that allows for scalability to large data sets. Whilst a typical
GP requires the entire training data set to be stored in memory and used for inference (an
example of instance-based learning), the VGP infers a smaller set of inducing index points.
The locations of these inducing index points are optimized during training to minimise the
Kullback-Leibler divergence between the GP based on all training data and the VGP.

Once created, the probabilistic model must be trained in order to optimize the locations of
the VGP’s inducing index points and its kernel parameters. However, the number of training
iterations required is typically only a small fraction of the training iterations needed to train
the base NN it is modifying.

The primary interface for unlockNN is the model module, which contains an extensible ProbNN

class for adding uncertainty quantification to arbitrary Keras models. It also contains a
MEGNetProbModel class for adding uncertainty quantification to MEGNet, and a download
suite for accessing example models and data. The models can be configured with different
kernels for the VGP, which are implemented in a kernel_layers module.
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Neural network-fed VGPs share a similar principle to the convolution-fed Gaussian processes
formulated by Tran et al. (2020). UnlockNN also implements tools for calculating the
performance metrics suggested by Tran et al. (2020), including sharpness and calibration error,
via its metrics module.
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