DOI: 10.21105/joss.03708

Software
= Review @@
= Repository &7
= Archive &

Editor: Frederick Boehm 2
Reviewers:

= @martinmodrak

= Qelimillera

Submitted: 20 August 2021
Published: 11 November 2021

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

The Journal of Open Source Software

Heta compiler: a software tool for the development of
large-scale QSP models and compilation into simulation
formats

Evgeny Metelkin!

1 InSysBio LLC

Summary

Today mathematical modeling is becoming more and more popular in biomedicine and drug
development. Quantitative systems pharmacology (QSP), a relatively new research dis-
cipline, is devoted to complex models describing organisms, diseases, and drug dynamics.
Designing these models presents a set of challenging methodological problems like managing
a huge amount of data, dealing with large-scale models, time-consuming calculations, etc.
Heta compiler is a small and fast software tool written in JavaScript which manages in-
frastructure for QSP modeling projects. The purpose of the tool is to build and integrate
QSP platform modules, to check their completeness and consistency, and then to compile
everything into runnable code that will be executed in simulation software. A user can apply
a command-line interface to run the model building process. Alternatively, Heta compiler can
be used as a package for developing web-based applications or be integrated with simulation
software.

Statement of need

The large and still growing Systems Biology (SB) and Systems Pharmacology modeling com-
munities utilize a variety of software tools for simulation and data analysis (Knight-Schrijver
et al., 2016; Mentré et al., 2020; Stéphanou et al.,, 2018). Usually, the modelers solve
the algebraic-differential equations or perform parameters identification or sensitivity analysis.
While being useful for tackling specific problems, each software tool often has no user-friendly
way for routine operations like step-by-step model creation and maintenance. Furthermore,
different tools have their own internal model format which cannot be reused.

This paper presents Heta compiler which provides a convenient and flexible way for the de-
velopment of dynamic large-scale models based on the Heta language code. The compiler
translates the source modeling code into a variety of formats to be run in simulation software
tools. Heta compiler also provides information on errors in a model which can be used to
debug.

This tool is an effort to resolve the typical problems in a QSP project by creating a controllable
working environment. The pre-formulated requirements are:

= store QSP models and data in integrated infrastructure,

= support iterative platform updates,

= support of models written in human-readable formats as well as in tables,

= help for model code reuse and sharing,

= provide interface for storing several models in a single platform,

= export models and data to different popular formats so it can be used out-of-the-box.

Metelkin, E., (2021). Heta compiler: a software tool for the development of large-scale QSP models and compilation into simulation formats. 1
Journal of Open Source Software, 6(67), 3708. https://doi.org/10.21105/joss.03708

https://doi.org/10.21105/joss.03708
https://github.com/openjournals/joss-reviews/issues/3708
https://github.com/hetalang/heta-compiler
https://doi.org/10.5281/zenodo.5666487
https://fboehm.us
https://github.com/martinmodrak
https://github.com/elimillera
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03708

The Journal of Open Source Software

Heta formats

Heta compiler has been evolving alongside the Heta language (Metelkin, 2019) specifica-
tion. Heta is a series of human-readable and writable formats for QSP and Systems Biology
projects: Heta code, table representation, JSON, and YAML notation. Heta describes dy-
namic models in the process-description format i.e., as interacting components that describe
volumes, concentrations, amounts, rates. On the other side, it was designed to be easily
transformed into ODEs or other formats.

The standardization of process-description modeling notation was also pursued in formats like
SBML, CellML, Antimony. However the Heta standard can be distinguished by the specific

features:

Example

Human-readable/writable code that can be used for model development or modification.
Easy code parsing.

Modularity: QSP/SB platform can be subdivided into several files and spaces for better
project management.

Multiple interchangeable representation: human-readable code, tables, JSON, YAML.
Reusability: modeling platforms should be easily extended for other projects.

Reach annotation capabilities for better model code revision.

Simple transformation to popular modeling formats or general-purpose ODEs.

Support of translation from/to SBML (Hucka et al., 2003).

Code in Figure 1 is an example of the Heta code describing a simple one-compartment model.
The metabolic scheme of the model can be found in Figure 2.

compl @Compartment .= 1;

A @Species { compartment: compl };
B @Species { compartment: compl };
rl @Reaction { actors: A => 2B };

k1*A*compl;

k1l @Const = 1e-3;

#export { format: SBML, filepath: sbml };
#export { format: Mrgsolve, filepath: mrgsolve };

Figure 1: Model code in Heta format: index.heta file.

Metelkin, E., (2021). Heta compiler: a software tool for the development of large-scale QSP models and compilation into simulation formats. 2
Journal of Open Source Software, 6(67), 3708. https://doi.org/10.21105/joss.03708

https://doi.org/10.21105/joss.03708

The Journal of Open Source Software

compl

k1*A*compl /
A ~<
compl=1 O
A(0) =10
B(0)=0
kl=1e-3

Figure 2: One compartment model with two metabolites and one reaction.

When the size of a model code is large it is recommended to subdivide it into modules but this
model is small and can be placed into a single file, e.g index.heta. To build the platform
with Heta compiler one can run the compilation with the following command in a command
terminal: heta build.

Features overview

Heta compiler includes the parser of the Heta formats and supports all features of the
Heta specifications of version 0.4.1. It was designed to support exporting to different popular
modeling formats. The current version supports the following formats:

= DBSolveOptimum

= SBML of levels 2 and 3

= mrgsolve

= Simbiology

= Matlab describing ODEs file
= Julia language code

= JSON/YAML

= Excel sheets

Heta compiler can work in two modes: as a command-line tool for model development or
as a library to be incorporated into third-party applications. The source code is written in
pure JavaScript and can be run in the Node environment or in a browser. It can be used for
both: server-side and front-end applications.

To use Heta compiler in a modeling project a user should follow the specific formats and
agreements. Project files i.e. model code, datasets, figures, etc. should be stored in the same
directory. This directory typically includes an optional platform.json declaration file that
stores the supplementary information of a platform as well as specific parameters for platform
compilation. The alternative way to set the options of the compiler is to use command-line
arguments. The list of them can be shown with heta build -h command in a shell.

Metelkin, E., (2021). Heta compiler: a software tool for the development of large-scale QSP models and compilation into simulation formats. 3
Journal of Open Source Software, 6(67), 3708. https://doi.org/10.21105/joss.03708

https://hetalang.github.io/#/specifications/
https://doi.org/10.21105/joss.03708

The Journal of Open Source Software

Modularity and reusability

code is subdivided to modules S —
— "

another project

platforms can share their parts

Code polymorphism
Modules can be in different formats
with the same meaning

modules integration

Multi OS support

build can be run on Windows, Linux,
MacOS, browser

terminal

$ heta build Various model formats

platform can generate models in different
/ \ \ formats with no adaptation

Figure 3: A typical workflow of heta compiler in a modeling project.

Results and discussion

Heta compiler can be used as the framework for a QSP modeling project of any size and
complexity. Currently, it is applied for the development and maintenance of a variety of com-
mercial and open-source modeling projects (Metelkin et al., 2019; Metelkin & Demin, 2020).
Heta compiler has also been used for the development of web applications like the Immune
Response Template navigator and “PK/RO simulator” R-Shiny application (Shchelokov et al.,
2019).

The Heta-based formats are friendly for version control systems like Git and SVN because
of the modular structure and the text-based representation. Heta compiler can easily be
integrated with existing modeling infrastructure, workflows or used as a part of a ClI/CD
workflow.

Heta compiler is a part of the Heta project which is an initiative for the development of
full-cycle infrastructure for modeling in pharmacology and biology: https://hetalang.github.io.

Metelkin, E., (2021). Heta compiler: a software tool for the development of large-scale QSP models and compilation into simulation formats. 4
Journal of Open Source Software, 6(67), 3708. https://doi.org/10.21105/joss.03708

https://irt.insysbio.com/
https://irt.insysbio.com/
https://hetalang.github.io
https://doi.org/10.21105/joss.03708

The Journal of Open Source Software

References

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., SBML Forum:,
and the rest of the, Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar,
A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, |. |., Hedley, W. J.,
Hodgman, T. C., .. Wang, J. (2003). The systems biology markup language (SBML): A
medium for representation and exchange of biochemical network models. Bioinformatics,
19. https://doi.org/10.1093/bioinformatics/btg015

Knight-Schrijver, V. R., Chelliah, V., Cucurull-Sanchez, L., & Novére, N. L. (2016). The
promises of quantitative systems pharmacology modelling for drug development. Compu-
tational and Structural Biotechnology Journal, 14. https://doi.org/10.1016/j.csbj.2016.
09.002

Mentré, F., Friberg, L. E., Duffull, S., French, J., Lauffenburger, D. A., Li, L., Mager, D.
E., Sinha, V., Sobie, E., & Zhao, P. (2020). Pharmacometrics and systems pharmacology
2030. Clinical Pharmacology & Therapeutics, 107. https://doi.org/10.1002/cpt.1683

Metelkin, E. (2019, October). "Heta" is a new declarative language to define the large-scale
systems pharmacology and systems biology models. American Conference on Pharmaco-
metrics 10.

Metelkin, E., Bagrova, N., Benson, N., Demin, O., & Graaf, P. van der. (2019). FAAH in-
hibitor: QSP modeling platform describing fatty acid amide hydrolase inhibition in human.
In GitHub repository. GitHub. https://github.com/insysbio/faah-inhibitor

Metelkin, E., & Demin, O. (2020). QSP model of COVID-19: SARS-CoV-2 virus and host cell
life cycles, immune response and therapeutic treatments. In GitHub repository. GitHub.
https://github.com/insysbio/covid19-gsp-model

Shchelokov, D., Metelkin, E., & Jr, O. D. (2019). PK/RO simulator for anti-PD-1 mAbs. In
ShinyApps.io. InSysBio LLC. https://insysbio.shinyapps.io/mAb-app/

Stéphanou, A., Fanchon, E., Innominato, P. F., & Ballesta, A. (2018). Systems biology,
systems medicine, systems pharmacology: The what and the why. Acta Biotheoretica, 66.
https://doi.org/10.1007 /s10441-018-9330-2

Metelkin, E., (2021). Heta compiler: a software tool for the development of large-scale QSP models and compilation into simulation formats. 5
Journal of Open Source Software, 6(67), 3708. https://doi.org/10.21105/joss.03708

https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1016/j.csbj.2016.09.002
https://doi.org/10.1016/j.csbj.2016.09.002
https://doi.org/10.1002/cpt.1683
https://github.com/insysbio/faah-inhibitor
https://github.com/insysbio/covid19-qsp-model
https://insysbio.shinyapps.io/mAb-app/
https://doi.org/10.1007/s10441-018-9330-2
https://doi.org/10.21105/joss.03708

	Summary
	Statement of need
	Heta formats
	Example

	Features overview
	Results and discussion
	References

