
OpenCMP: An Open-Source Computational Multiphysics
Package
Elizabeth Julia Monte1, Alexandru Andrei Vasile1, James Lowman1, and
Nasser Mohieddin Abukhdeir1,2¶

1 Department of Chemical Engineering, University of Waterloo, Ontario, Canada 2 Department of
Physics and Astronomy, University of Waterloo, Ontario, Canada ¶ Corresponding author

DOI: 10.21105/joss.03742

Software
• Review
• Repository
• Archive

Editor: Lucy Whalley
Reviewers:

• @bonh
• @WilkAndy

Submitted: 16 August 2021
Published: 06 May 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
OpenCMP is a computational multiphysics software package based on the finite element
method (Ferziger & Perić, 2002). It is primarily intended for physicochemical processes in
which fluid convection plays a significant role. OpenCMP uses the NGSolve finite element
library (Schöberl, n.d.) for spatial discretization and provides a configuration file-based interface
for pre-implemented models and time discretization schemes. It also integrates with Netgen
(Schöberl, n.d.) and Gmsh (Geuzaine & Remacle, 2009) for geometry construction and meshing.
Additionally, it provides users with built-in functionality for post-processing, error analysis, and
data export for visualisation using Netgen (Schöberl, n.d.) or ParaView (Ahrens et al., 2005).

OpenCMP development follows the principles of ease of use, performance, and extensibility.
The configuration file-based user interface is intended to be concise, readable, and intuitive.
Furthermore, the code base is structured and documented (Monte, Elizabeth J, 2021) such
that experienced users with appropriate background can add their own models with minimal
modifications to existing code. The finite element method enables the use of high-order
polynomial interpolants for increased simulation accuracy, however, continuous finite element
methods suffer from stability and accuracy (conservation) for fluid convection-dominated
problems. OpenCMP addresses this by providing discontinuous Galerkin method (Cockburn et
al., 2000) solvers, which are locally conservative and improve simulation stability for convection-
dominated problems. Finally, OpenCMP implements the diffuse interface or diffuse domain
method (Monte et al., 2021; Nguyen et al., 2018), which a type of continuous immersed
boundary method (Mittal & Iaccarino, 2005). This method enables complex domains to be
meshed by non-conforming structured meshes for improved simulation stability and reduced
computational complexity, under certain conditions (Monte et al., 2021).

Statement of Need
Simulation-based analysis continues to revolutionize the engineering design process. Simulations
offer a fast, inexpensive, and safe alternative to physical prototyping for preliminary design
screening and optimization. Simulations can also offer more detailed insight into the physical
phenomena of interest than is feasible from experimentation. Computational multiphysics is
an area of particular importance since coupled physical and chemical processes are ubiquitous
in science and engineering.

However, there are several barriers to more wide spread use of simulations. One such barrier is
the lack of user-friendly finite element-based open-source simulation software. Many of the most
widely-used computational multiphysics software packages, such as COMSOL Multiphysics
(COMSOL Multiphysics ®, n.d.) or ANSYS Fluent (Ansys ® Fluent, n.d.), are closed-source
and cost-prohibitive. Furthermore, the predominance of the finite volume method for fluid

Monte et al. (2022). OpenCMP: An Open-Source Computational Multiphysics Package. Journal of Open Source Software, 7(73), 3742.
https://doi.org/10.21105/joss.03742.

1

https://doi.org/10.21105/joss.03742
https://github.com/openjournals/joss-reviews/issues/3742
https://github.com/uw-comphys/opencmp
https://doi.org/10.5281/zenodo.6515912
http://lucydot.github.io
https://github.com/bonh
https://github.com/WilkAndy
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03742


dynamics simulations inherently limits simulation accuracy for a given mesh compared to the
finite element method (Ferziger & Perić, 2002). Many high-quality open-source packages exist
which use the finite element method, such as the computational multiphysics software MOOSE
(Permann et al., 2020), the finite element libraries NGSolve (Schöberl, n.d.) or FEniCS
(Alnaes et al., 2015). However, these packages require that the user has a relatively detailed
understanding of the finite element method, such as derivation of the weak formulation of the
problem, along with programming experience. Alternatively, open-source finite volume-based
packages such OpenFOAM (OpenFOAM V9 User Guide, n.d.) and SU2 (Economon et al.,
2016) are more accessible to the broader scientific and engineering community in that they
require a less detailed understanding of numerical methods and programming, instead requiring
an understanding of the command line interface (CLI) and configuration through a set of
configuration files.

A second barrier is the complex geometries inherent to many real-world problems. Conformal
meshing of these complex geometries is time and labour intensive and frequently requires
user-interaction, making conformal mesh-based simulations infeasible for high-throughput
design screening of many industrially-relevant processes (Yu et al., 2015). A possible solution
is the use of immersed boundary methods (Mittal & Iaccarino, 2005) to allow the use of
non-conforming structured meshes - simple and fast to generate - for any geometry. Use of
structured meshes can also potentially improve simulation stability compared to unstructured
meshes (Yu et al., 2015). The diffuse interface has been shown by Monte et al. (2021) to
significantly speed-up inherently low accuracy simulations - such as those used for preliminary
design screening and optimization - compared to conformal mesh-based simulations. Providing
an easy-to-use publicly available implementation of this method would enable broader use by
the research community and further development.

The goal of OpenCMP is to fill this evident need for an open-source computational multiphysics
package which is user-friendly, based on the finite element method, and which implements
the diffuse interface method. OpenCMP is built on top of the NGSolve finite element library
(Schöberl, n.d.) to take advantage of its extensive finite element spaces, high performance
solvers, and preconditioners. OpenCMP provides pre-implemented models and a configuration
file-based user interface in order to be accessible to the general simulation community, not just
finite element experts. The user interface is designed to be intuitive, readable, and requires
no programming experience - solely knowledge of the CLI. Users must choose the model that
suites their application, but need no experience with the actual numerical implementation of
said model. Finally, OpenCMP provides a publicly available implementation of the diffuse
interface method with support for stabilized Dirichlet boundary conditions (Nguyen et al.,
2018).

Features
The table below summarizes the current capabilities of OpenCMP. The numerical solvers for
each of these models have been verified using common benchmarks (Monte, Elizabeth J, 2021).
Future work on OpenCMP will focus on adding models - for multi-phase flow, turbulence,
and heat transfer - and enabling running simulations in parallel over multiple nodes with MPI
(Message Passing Interface Forum, 2015).

Feature Description
Meshing Accepts Netgen (Schöberl, n.d.) or Gmsh (Geuzaine & Remacle, 2009)

meshes
Numerical Methods Standard continuous Galerkin finite element method

Discontinuous Galerkin finite element method
Diffuse interface method

Models Poisson (Heat) equation

Monte et al. (2022). OpenCMP: An Open-Source Computational Multiphysics Package. Journal of Open Source Software, 7(73), 3742.
https://doi.org/10.21105/joss.03742.

2

https://doi.org/10.21105/joss.03742


Feature Description
Stokes equations
Incompressible Navier-Stokes (INS) equations
Multicomponent Mixture INS equations

Time Schemes First-, second-, and third- order discretizations
Adaptive time-stepping

Solvers Direct or iterative solvers
Direct, Jacobi, or multigrid preconditioners
Oseen (Cockburn et al., 2003) or IMEX (Ascher et al., 1995)
linearization of nonlinear models

Post-Processing Error norms calculated based on reference solutions
Mesh and polynomial refinement convergence tests
General simulation parameters (surface traction, divergence of
velocity…)
Exports results to Netgen (Schöberl, n.d.) or ParaView (Ahrens et al.,
2005) format

Performance Multi-threading

Further information, including installation instructions and tutorials can be found on the
OpenCMP website. The tutorials are intended to guide new users through the various features
offered in OpenCMP. Notes on the mathematical foundations of the various models and code
documentation are also provided.

Software testing is provided through integration tests, which confirm the accuracy of the
implemented models and time discretization schemes, and unit tests which currently offer 72%
line coverage. Further information regarding performance verification of OpenCMP is given by
Monte, Elizabeth J (2021).

User Interface
Drawing inspiration from packages like OpenFOAM and SU2, the OpenCMP user interface is
organized around configuration files and the CLI. Each simulation requires its own directory to
hold its configuration files and outputs. This is known as the run directory or run_dir/. The
standard layout of this directory is shown below.

bc_dir

bc_config

ic_dir

ic_config

model_dir

model_config

ref_sol_dir

ref_sol_config

simulation

config

output

Monte et al. (2022). OpenCMP: An Open-Source Computational Multiphysics Package. Journal of Open Source Software, 7(73), 3742.
https://doi.org/10.21105/joss.03742.

3

https://opencmp.io/getting_started/installation_guide.html
https://opencmp.io/tutorials/index.html
https://opencmp.io/
https://opencmp.io/mathematical_notes/index.html
https://opencmp.io/source/modules.html
https://opencmp.io/source/modules.html
https://openfoam.org/
https://su2code.github.io/
https://doi.org/10.21105/joss.03742


The main directory and each subdirectory contain a configuration file (e.g., bc_config). These
are plaintext files that specify the simulation parameters and run conditions.

The configuration file in the main directory contains general information about the simulation
including which model, mesh, finite element spaces, and solver should be used. It also contains
information about how the simulation should be executed such as the level of detail in the
output messages and the number of threads to use.

The bc_dir/ subdirectory contains information about the boundary conditions. Its configuration
file specifies the type and value of each boundary condition. This subdirectory also contains
files describing boundary condition data if a boundary condition value is to be loaded from file
instead of given in closed form.

The ic_dir subdirectory holds information about the initial conditions. Its configuration file
specifies the value of the initial condition for each model variable. Like bc_dir/, ic_dir/ may
contain additional files from which the initial condition data is loaded during the simulation.

The model_dir/ subdirectory contains information about model parameters and model func-
tions. Its configuration file specifies the values of any model parameters or functions for each
model variable and the subdirectory may hold additional data files to be loaded during the
simulation.

The ref_sol_dir/ subdirectory contains information about the error analysis to be conducted
on the final simulation result. Its configuration file specifies what error metrics should be
computed during post-processing. This configuration file also contains the reference solutions
the results should be compared against, either in closed form or as references to other files in
the subdirectory that are loaded during post-processing.

The output/ subdirectory contains the saved simulation data. It does not need to be created
before running the simulation, it will be generated automatically if results should be saved to
file.

Examples of Usage
Several examples of usage of OpenCMP are given by Monte, Elizabeth J (2021) and also
available via its website. Three relevant examples are summarized here: multi-component
incompressible flow (transient 2D, Tutorial 8), using the diffuse interface method to approximate
complex geometries (steady-state 3D, Tutorial 9), and incompressible flow around an immersed
cylinder (steady-state 3D, Tutorial 10).

Tutorial 8 demonstrates the usage of OpenCMP to solve a multiphysics problem, two-
dimensional transient multi-component incompressible flow around a set of immersed circular
objects within a rectangular channel, shown below.

The mixture is composed of two components (A, B) where A undergoes an irreversible reaction
A → B. A parabolic inlet flow of pure A is imposed, such that the mixture undergoes convection,
reaction, and molecular diffusion throughout the channel. Sample simulation results of the
steady-state are shown resulting from a cosine ramp of the inlet velocity an initial condition
with no flow and pure A.

Monte et al. (2022). OpenCMP: An Open-Source Computational Multiphysics Package. Journal of Open Source Software, 7(73), 3742.
https://doi.org/10.21105/joss.03742.

4

https://opencmp.io/tutorials/
https://opencmp.io/tutorials/tutorial_8.html
https://opencmp.io/tutorials/tutorial_9.html
https://opencmp.io/tutorials/tutorial_10.html
https://opencmp.io/tutorials/tutorial_8.html
https://doi.org/10.21105/joss.03742


Tutorial 9 demonstrates how to use the diffuse interface method to approximate complex
geometries with nonconformal structured quadrilateral/hexahedral meshes, versus the use of a
traditional unstructured mesh which conforms to the complex geometry boundary. The sample
problem is based on a simulation of heat transfer within an LED heat sink (Monte et al., 2021),
with a geometry shown below.

The base of the heat sink is exposed to a spatially varying heat flux profile, corresponding
to heat generated by an LED assembly, with convective heat transfer conditions assumed on
the exterior fins. A script is provided for ease of post-processing visualization, showing the
diffuse-interface boundaries (comparable to the geometry above) and steady-state temperature
profile.

Tutorial 10 demonstrate using OpenCMP to perform a standard benchmark for 3D flow around
an immersed cylinder (Bayraktar et al., 2012) under laminar flow conditions. Both continuous
and discontinuous Galerkin finite element solver configurations are provided, defaulting to the
continuous Galerkin variation due to reduced memory constraints. The geometry involves an
immersed cylinder in square channel with parabolic inlet velocity resulting in Re=20. This
example also uses the built-in error analysis functionality of OpenCMP to automatically compute
the force vector on the immersed cylinder through integration of the surface traction over its
boundary. This facilitates the calculation of the resulting drag and lift forces on the immersed
cylinder.

Visualizations of the three-dimensional steady-state velocity field are shown below and include
side and top view cross-sections with line integral convolution rendering of the velocity field.
Additionally, velocity streamlines are shown with a background cross-section indicating pressure

Monte et al. (2022). OpenCMP: An Open-Source Computational Multiphysics Package. Journal of Open Source Software, 7(73), 3742.
https://doi.org/10.21105/joss.03742.

5

https://opencmp.io/tutorials/tutorial_9.html
https://opencmp.io/tutorials/tutorial_10.html
https://doi.org/10.21105/joss.03742


along the channel.

Several additional examples of usage of OpenCMP in tutorial form are available via the website.

Acknowledgements
The authors would like to thank Prof. Sander Rhebergen for useful discussions regarding the
discontinuous Galerkin method and Prof. Joachim Schöberl for useful discussions regarding
IMEX time integration, preconditioning, and usage of the NGSolve finite element library. This
research was supported by the Natural Sciences and Engineering Research Council (NSERC)
of Canada and Compute Canada.

References
Ahrens, J., Geveci, B., & Law, C. (2005). ParaView: An end-user tool for large data visu-

alization (Technical Report LA-UR-03-1560). Los Alamos National Laboratory. https:
//doi.org/10.1016/b978-012387582-2/50038-1

Alnaes, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring,
J., Rognes, M. E., & Wells, G. N. (2015). The FEniCS Project Version 1.5. Archive of
Numerical Software, 3. https://doi.org/10.11588/ans.2015.100.20553

Ansys ® Fluent. (n.d.). ANSYS Inc. Online. Retrieved April 21, 2022, from https://www.
ansys.com/products/fluids/ansys-fluent

Ascher, U. M., Ruuth, S. J., & Wetton, B. T. R. (1995). Implicit-explicit methods for
time-dependent partial differential equations. SIAM Journal on Numerical Analysis, 32(3),
797–823. https://doi.org/10.1137/0732037

Bayraktar, E., Mierka, O., & Turek, S. (2012). Benchmark computations of 3D laminar
flow around a cylinder with CFX, OpenFOAM and FeatFlow. International Journal of
Computational Science and Engineering, 7(3), 253–266. https://doi.org/10.1504/ijcse.
2012.048245

Cockburn, B., Kanschat, G., & Schötzau, D. (2003). The local discontinuous Galerkin
method for the Oseen equations. Mathematics of Computation, 73(246), 569–593. https:
//doi.org/10.1090/s0025-5718-03-01552-7

Monte et al. (2022). OpenCMP: An Open-Source Computational Multiphysics Package. Journal of Open Source Software, 7(73), 3742.
https://doi.org/10.21105/joss.03742.

6

https://opencmp.io/tutorials/
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.11588/ans.2015.100.20553
https://www.ansys.com/products/fluids/ansys-fluent
https://www.ansys.com/products/fluids/ansys-fluent
https://doi.org/10.1137/0732037
https://doi.org/10.1504/ijcse.2012.048245
https://doi.org/10.1504/ijcse.2012.048245
https://doi.org/10.1090/s0025-5718-03-01552-7
https://doi.org/10.1090/s0025-5718-03-01552-7
https://doi.org/10.21105/joss.03742


Cockburn, B., Karniadakis, G. E., & Shu, C.-W. (2000). Discontinuous Galerkin methods:
Theory, computation and applications (1st ed., pp. 3–50). Springer-Verlag. ISBN: 3-540-
66787-3

COMSOL Multiphysics ®. (n.d.). COMSOL AB; Online. Retrieved April 21, 2022, from
https://www.comsol.com/

Economon, T. D., Palacios, F., Copeland, S. R., Lukaczyk, T. W., & Alonso, J. J. (2016).
SU2: An open-source suite for multiphysics simulation and design. AIAA Journal, 54(3),
828–846. https://doi.org/10.2514/1.J053813

Ferziger, J. H., & Perić, M. (2002). Computational methods for fluid dynamics (3rd ed.).
Springer-Verlag. ISBN: 3-540-42074-6

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A three-dimensional finite element mesh gener-
ator with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579

Message Passing Interface Forum. (2015). MPI: A message-passing interface standard version
3.1. High-Performance Computing Center.

Mittal, R., & Iaccarino, G. (2005). Immersed boundary methods. Annual Review of Fluid
Mechanics, 37, 239–261. https://doi.org/10.1146/annurev.fluid.37.061903.175743

Monte, E. J., Lowman, J., & Abukhdeir, N. M. (2021). A diffuse interface method for
simulation-based screening of heat transfer processes with complex geometries. The
Canadian Journal of Chemical Engineering. https://doi.org/10.1002/cjce.24320

Monte, Elizabeth J. (2021). OpenCMP: An open-source computational multiphysics package
[Master’s thesis, UWSpace]. http://hdl.handle.net/10012/17239

Nguyen, L. H., Stoter, S. K. F., Ruess, M., Sanchez Uribe, M. A., & Schillinger, D. (2018).
The diffuse Nitsche method: Dirichlet constraints on phase-field boundaries. Int. J. Numer.
Methods Eng., 113(4), 601–633. https://doi.org/10.1002/nme.5628

OpenFOAM v9 user guide. (n.d.). OpenFOAM Foundation; Online. Retrieved April 21, 2022,
from https://cfd.direct/openfoam/user-guide

Permann, C. J., Gaston, D. R., Andrš, D., Carlsen, R. W., Kong, F., Lindsay, A. D., Miller,
J. M., Peterson, J. W., Slaughter, A. E., Stogner, R. H., & Martineau, R. C. (2020).
MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX, 11, 100430.
https://doi.org/10.1016/j.softx.2020.100430

Schöberl, J. (n.d.). Netgen/NGSolve. Online. Retrieved April 21, 2022, from https://ngsolve.
org/

Yu, W., Zhang, K., & Li, X. (2015, July). Recent algorithms on automatic hexahedral
mesh generation. The 10th International Conference on Computer Science & Education.
https://doi.org/10.1109/iccse.2015.7250335

Monte et al. (2022). OpenCMP: An Open-Source Computational Multiphysics Package. Journal of Open Source Software, 7(73), 3742.
https://doi.org/10.21105/joss.03742.

7

https://www.comsol.com/
https://doi.org/10.2514/1.J053813
https://doi.org/10.1002/nme.2579
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1002/cjce.24320
http://hdl.handle.net/10012/17239
https://doi.org/10.1002/nme.5628
https://cfd.direct/openfoam/user-guide
https://doi.org/10.1016/j.softx.2020.100430
https://ngsolve.org/
https://ngsolve.org/
https://doi.org/10.1109/iccse.2015.7250335
https://doi.org/10.21105/joss.03742

	Summary
	Statement of Need
	Features
	User Interface
	Examples of Usage
	Acknowledgements
	References

