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Summary
SPbLA is a sparse Boolean linear algebra primitives and operations for GPGPU computations.
It comes as a stand-alone self-sufficient library with C API for high-performance computing
with multiple backends for Nvidia Cuda, OpenCL and CPU-only platforms. The library has
PyPI pyspbla package (Orachev et al., 2021) for work within a Python runtime. The primary
library primitive is a sparse matrix of Boolean values. The library provides the most popular
operations for matrix manipulation, such as construction from values, transpose, sub-matrix
extraction, matrix-to-vector reduce, matrix-matrix element-wise addition, multiplication and
Kronecker product.

Statement of need
Answering research questions in data analysis often involves expressing the solution in terms of
matrix/vector operations. This way it is possible to leverage a set of powerful sparse linear
algebra libraries.
GraphBLAS API provides a set of unified linear algebra based building blocks for reducing
analysis algorithms to sparse linear algebra operations. While GPGPU utilization for high-
performance linear algebra is common, the high complexity of GPGPU programming makes
the implementation of the complete set of sparse operations on GPGPU challenging. Thus,
it is worth addressing this problem by focusing on a basic but still important case — sparse
Boolean algebra.

The primary goal of the SPbLA is to provide a base for the implementation, testing and profiling
high-performance algorithms for solving data analysis problems, such as RDF analysis (X.
Zhang et al., 2015), RNA secondary structure analysis (Anderson et al., 2013), static code
analysis (such as points-to or alias analysis) (Q. Zhang et al., 2013) and evaluation of regular
and CFL-reachability queries (Azimov & Grigorev, 2018; Orachev et al., 2020).

Thus, we can offload different language-constrained path querying related problems, and other
problems that can be reduced to manipulation of Boolean matrices, to GPGPU uniformly.

Moreover, real world data analysis leads to huge matrix processing that can not be efficiently
handled on a single GPGPU. The creation of the library which supports multi-GPU and
out-of-VRAM computations helps to create an efficient solution for a wide range of applied
problems. The creation of such a solution is an open problem while ad-hoc solutions exist in
specific areas. We propose an SPbLA as a base for such a solution.

Also, we hope that the library is a small step to move the implementation of the fully-featured
sparse linear algebra as specified in GraphBLAS forward multi-GPU computations.
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Related tools
GraphBLAS API (Kepner et al., 2016) is one of the first standards that formalize the mathemat-
ical building blocks in the form of the programming interface for implementing algorithms in
the language of linear algebra. SuiteSparse (T. A. Davis, 2019) is a reference implementation
of the GraphBLAS API for CPU computation. It is a mature and fully featured library with
a number of bindings for other programming languages, such as pygraphblas (Pygraphblas,
2021) for Python programming.

GPGPU’s utilization for data analysis and for linear algebra operations is a promising way to high-
performance data analysis because GPGPU is much more powerful in parallel data processing.
However, GPGPU programming is still challenging. To the best of our knowledge, there is
no complete GraphBLAS API implementation for GPGPU computations, except GraphBLAST

(Yang et al., 2019), which is currently in active development. Some work is also done to move
SuiteSparse forward GPGPU computations.

However, the sparsity of data introduces issues with load balancing, irregular data access, thus
sparsity complicates the implementation of high-performance algorithms for sparse linear algebra
on GPGPU. There are a number of open-source and proprietary libraries, which implement
independently different sparse formats and operations. Thus, there is no single solid sparse
linear algebra framework. Libraries such as cuSPARSE (Sparse Matrix Library in Cuda, n.d.),
bhSPARSE (Liu & Vinter, 2015), clSPARSE (Greathouse et al., 2016) and CUSP (Dalton et al.,
2014) have limited type and operators customization features with major focus on numerical
types only.

Performance
We evaluate the utility of the proposed library for some real-world matrix data. The experiment
itself is designed as a computational task, which arises as a stand-alone or intermediate step in
the solving of practical problems. Results of the evaluation compared to CPU SuiteSparse

and existing GPU sparse linear algebra libraries. The comparison is not entirely fair, since there
are still no Boolean linear algebra libraries for GPU computations.

Machine for performance evaluation has the following configuration: PC with OS Ubuntu
20.04 installed, Intel Core i7-6700 3.4Hz CPU, 64Gb DDR4 RAM, GeForce GTX 1070 GPU
with 8Gb VRAM.

Matrix
name # Rows Nnz M Nnz/row Max Nnz/row Nnz M^2
ama-
zon0312

400,727 3,200,440 7.9 10 14,390,544

amazon-
2008

735,323 5,158,388 7.0 10 25,366,745

web-
Google

916,428 5,105,039 5.5 456 29,710,164

roadNet-
PA

1,090,920 3,083,796 2.8 9 7,238,920

roadNet-
TX

1,393,383 3,843,320 2.7 12 8,903,897

roadNet-
CA

1,971,281 5,533,214 2.8 12 12,908,450

nether-
lands_osm

2,216,688 4,882,476 2.2 7 8,755,758

For evaluation, we selected a number of square real-world matrices, widely applicable for sparse
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matrices benchmarks, from the Sparse Matrix Collection at University of Florida (T. Davis,
n.d.). Information about matrices summarized above. Table contains matrix name, number of
rows in the matrix (the same as number of columns), number of non-zero elements (Nnz) in
the matrix, average and maximum nnz in row, nnz in the result matrix.

The experiment is intended to measure the performance of matrix-matrix multiplication as
𝑀 × 𝑀. Results of the evaluation presented in Figure 1 and Figure 2. Results averaged
among 10 runs. The deviation of results does not exceed 10%. Best and worst results
highlighted. Extra warm-up run, required for initialization and kernels compilation, is excluded
from measurements.

SPbLA library shows the best performance among competitors for both OpenCL and Nvidia
Cuda backends. CUSP and cuSPARSE show good performance as well. However, they have
significant memory consumption in some cases, which can be a critical limitation in practical
analysis tasks. SuiteSparse library on CPU has acceptable performance characteristics, and it
is still a good alternative for CPU-only computations.

Figure 1: Matrix-matrix multiplication time consumption. Time in milliseconds. Lower is better.

Figure 2: Matrix-matrix multiplication memory consumption. Memory in megabytes. Lower is better.
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Future research
First direction of the future research is library extension to multi-GPU environment support.
This step introduces a number of issues, such as memory management among computational
units as well as proper workload dispatch and granularity of parallel tasks. A potential solution
is to use a hybrid sparse matrix format, such as quadtree or blocked storage, and utilize virtual
memory. It is necessary to expose more control over expressions evaluations to the user in
order to support matrix and expression level granularity among computational units.

Finally, we plan to generalize computational kernels and primitives in order to support arbitrary
types and operations, defined by the user. This step will allow defining custom elements and
functions, which will be executed on GPU similarly as it is done for predefined Boolean values.
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