
LaplaceInterpolation.jl: A Julia package for fast
interpolation on a grid
Vishwas Rao1, Charlotte L. Haley1, and Mihai Anitescu1,2

1 Argonne National Laboratory 2 University of Chicago
DOI: 10.21105/joss.03766

Software
• Review
• Repository
• Archive

Editor: Viviane Pons
Reviewers:

• @wkearn
• @eviatarbach

Submitted: 09 September 2021
Published: 04 February 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

We implement a linear-time algorithm for interpolation on a regular multidimensional grid
in the Julia language. The algorithm is an approximate Laplace interpolation (Press, 1992)
when no parameters are given; and when parameters m ∈ Z and ϵ > 0 are set, the interpolant
approximates a Matérn kernel, of which radial basis functions and polyharmonic splines are a
special case. We implement, in addition, Neumann, Dirichlet (trivial), and average boundary
conditions with potentially different aspect ratios in the different dimensions. The interpolant
functions in arbitrary dimensions.

Mathematical Background

Radial basis functions and splines can be unified conceptually through the notion of Green’s
functions and eigenfunction expansions (Fasshauer, 2012). The general multivariate Matérn
kernels are of the form

K(x; z) = Km−d/2(ϵ||x− z||)(ϵ||x− z||)m−d/2

for m > d/2, where K is the modified Bessel function of the second kind with parameter ν
and can be obtained as Green’s kernels of

L = (ϵ2I −∆)m,

where ∆ denotes the Laplacian operator in d dimensions. Polyharmonic splines, including thin
plate splines, are a special case of the above.
The discrete gridded interpolation seeks to find an interpolation u(x) that satisfies the dif-
ferential operator in d dimensions on the nodes xi where there is no data and equals yi
everywhere else. Discretely, one solves the matrix problem

C(u− y)− (1−C)Lu = 0,

where y contains the yi’s and placeholders where there is no data, L denotes the discrete
matrix operator, and C is a diagonal matrix that indicates whether node xi is observed.
In d dimensions the matrix A(d) of size M ×M , where M is the product of the number of
grid locations in each dimension, i.e. M =

∏d
i=1 Ni, expands the first-order finite difference

curvature, and its (i, j)th entry is −1 when node j is in the set of neighbors of the node xi

and has the number of such neighbors on the diagonal. Note that if node i is a boundary
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node, the ith row of A(d) has −1s in the neighboring node spots and the number of such
nodes on the diagonal. In general, the rows of A(d) sum to zero.
Denote by L = A(d) the discrete analog of the Laplacian operator. To use the Matérn
operator, one substitutes

L = B(d)(m, ϵ) = ((A(d))m − ϵ2I).

Algorithmic Complexity and Performance

The sparsity of the matrix A means that the algorithmic complexity for both Laplace and
Matérn interpolation is O(M). Furthermore, A contains at most 5 nonzero entries per row
when d = 2 and 7 nonzero entries per row when d = 3 and so on, which implies that the
constant hidden by the big-O notation is small. The Matérn matrix B(d)(m, ϵ) is also sparse,
having 2(m+ d)− 1 nonzero entries per row.

Performance comparisons

As a synthetic example, we generate a one dimensional realization of data from a Gaussian
process (GP) with a Matérn covariance. The function to predict is

f(x) = sin(2πx0.1) + 0.05ζx,

where ζx ∼ N(0, 1) independently for every integer x. Prediction was done using Matérn
covariance with length scale 1.0 and roughness 1.5 which corresponds to m = 2 and ϵ =

√
3,

and these data were given for Nsample = 100 random points out of Ntotal = 1100. Fig. 1
shows a toy version of this process with Nsample = 10 points and Ntotal = 20 in x along with
the Laplacian and Matérn interpolations using the true parameters. Note that, by construction,
a continuous Matérn operator with the same parameters ought to perfectly reconstruct the
data, and the errors we analyze here are due to the finite differencing. Boundary conditions
add additional error.
The timing and accuracy of the interpolation is shown in Fig. 1. Benchmarking the timings,
one finds the results in panel (b). Note the log scale on the y−axis in this figure, mean
processing times were 785, 975, and 9736 µs for the Laplace, Matérn, and GP interpolation,
respectively, representing an order of magnitude difference in timing. Furthermore, relative
errors, shown in panel (c) had means of 4.2, 3.1, and 3.9 for the Laplace interpolation, Matérn
Interpolation, and the GP prediction at the missing points, respectively. That is, the discrete
(Matérn) version of the interpolation gave results with similar accuracy as the GP prediction.
Figure 1: Left panel shows a realization of GP data generated using a 1D Matérn kernel. The
data used to create the GP is greyed out, while known points and interpolated points using
the three interpolation methods are shown. (Colors are green for truth, brown for Laplace,
turqouise for Matern(2, 1.05), and magenta for GP prediction.) The center panel shows the
timings of the algorithm, and the right panel shows the accuracy. Parameters are given in
text.
A Jupyter notebook is included in the repository to reproduce these performance figures.

Statement of Need

While numerous implementations of interpolation routines exist that fill missing data points
on arbitrary grids, these are largely restricted to one and two dimensions and are slow to
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run. The implementation we propose is dimension-agnostic, based on a linear-time algorithm,
and implements an approximate Matérn kernel interpolation (of which thin plate splines,
polyharmonic splines, and radial basis functions are a special case).

Why Is It So Fast?

The implementation is fast because the problem largely boils down to the solution of Ax = b
(Mainberger et al., 2011), where the square matrix A’s size is the product of the number of
points in each of the dimensions and is dense. For the special case where the data points
are on a regular grid and the Matérn kernel interpolant is used, a remarkable simplification
occurs in which a discrete approximation to the Green’s function for the operator results in
an interpolant having sparse matrix representation.

Other Software for Interpolation

As of the time of this writing, related software includes the following:

Julia

• Interpolations.jl, which does B-splines and Lanczos interpolation and has support for
irregular grids (Lycken et al., 2014)

• Dierckx.jl, a Julia-wrapped Fortran package for 1-D and 2-D splines (Barbary & con-
tributors, 2014)

• GridInterpolations.jl (Kochenderfer & Laboratory, 2016)
• Laplacians.jl, whose function harmonic_interp is similar to our vanilla implementation

(Spielman & contributors, 2015)

Python

• astropy.convolve, which will interpolate gridded data by rescaling a convoution kernel
when it encounters missing values (Astropy Collaboration et al., 2018)

• scipy.interpolate.RBF (Virtanen et al., 2020)

Python Wrapper

• gridinterppy, which serves as a Python wrapper for LaplaceInterpolation.jl (Haley, 2021)
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