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Background

Sampling-based motion planning is one of the fundamental methods by which robots navi-
gate and integrate with the real world (Elbanhawi & Simic, 2014). Motion planning involves
planning the trajectories of the actuated part of the robot, under various constraints, while
avoiding collisions with surrounding obstacles. Sampling-based motion planners (SBPs) are
robust methods that avoid explicitly constructing the often intractable high-dimensional con-
figuration space (C-Space). Instead, SBPs randomly sample the C-Space for valid connections
and iteratively build a roadmap of connectivity. Most SBPs are guaranteed to find a solution if
one exists (Kavraki et al., 1996), and such a planner is said to be probabilistic complete. A fur-
ther development for SBPs is asymptotic optimality(Elbanhawi & Simic, 2014): a guarantee
that the method will converge, in the limit, to the optimal solution.
SBPs are applicable to a wide range of applications. Example include planning with arbitrary
cost maps (Iehl et al., 2012), cooperative multi-agent planning (Jiang & Wu, 2020), and
planning in dynamic environments (Yershova et al., 2005). On the one hand, researchers
have focused on the algorithmic side of improving the graph or tree building (Elbanhawi &
Simic, 2014; Klemm et al., 2015; Lai et al., 2019; Lai, 2021; Lai & Ramos, 2021b; Zhong &
Su, 2012). On the other hand, the advancement of neural networks allows an abundance of
learning approaches to be applied in SBPs (Bagnell, 2014; Strub & Gammell, 2020) and on
improving the sampling distribution (Alcin et al., 2016; Lai et al., 2020, 2021; Lai & Ramos,
2020, 2021a).

Statement of need

The focus of motion planning research has been mainly on (i) the algorithmic aspect of the
planner using different routines to build a connected graph and (ii) improving the sampling
efficiency (with methods such as heuristic or learned distribution). Traditionally, robotic
research focuses on algorithmic development, which has inspired several motion planning
libraries written in C++, such as Move3D (Simeon et al., 2001) and OMPL (Sucan et al.,
2012). In particular, OMPL has been one of the most well-known motion planning libraries
due to its versatility, and it has been a core part of the planning algorithm used in the MoveIt
framework (Chitta et al., 2012). However, swapping the sampler within each planner is very
restrictive, as planners are typically hard-coded to use a specific sampler. In addition, it is
cumbersome to integrate any learning-based approach into a framework as there is only a
limited number of choices of deep-learning libraries in C++.
Python has been a popular language to use in Machine Learning due to its rapid scripting
nature. For example, PyTorch (Paszke et al., 2019) and Tensorflow (Abadi et al., 2016) are
two popular choices for neural network frameworks in Python. A large number of learning

Lai, T., (2021). sbp-env: A Python Package for Sampling-based Motion Planner and Samplers. Journal of Open Source Software, 6(66), 3782.
https://doi.org/10.21105/joss.03782

1

https://doi.org/10.21105/joss.03782
https://github.com/openjournals/joss-reviews/issues/3782
https://github.com/soraxas/sbp-env
https://doi.org/10.5281/zenodo.5572325
http://danielskatz.org/
https://github.com/KanishAnand
https://github.com/OlgerSiebinga
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03782


approaches are available as Python packages. It shall be noted that the aforementioned OMPL
has Python bindings available; however, OMPL uses an outdated Py++ code generator, and
every modification to the source code will require hours to updates bindings plus recompilation.
Some Python repositories are available that are dedicated to robotics motion planning (Sakai
et al., 2018); however, most only showcase various planning algorithms, without an integrated
environment and simulators.

Figure 1: Implementation details on the class hierarchy structure of sbp-env.

Overview

We introduce sbp-env, a sampling-based motion planners’ testing environment, as a complete
feature framework to allow rapid testing of different sampling-based algorithms for motion
planning. sbp-env focuses on the flexibility of tinkering with different aspects of the frame-
work, and it divides the main planning components into two main categories: (i) samplers
and (ii) planners. The division of the two components allows users to decouple them and
focus only on the component that serves as the main focus of the research. sbp-env has
implemented the entire robot planning framework with multiple degrees-of-freedom, which
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allows benchmarking motion planning algorithms with the same planner under different back-
end simulators. Separating the two components allows users to quickly swap out different
components in order to test novel ideas.
Building the framework enables researchers to rapidly implement their novel ideas and validate
their hypotheses. In particular, users can define the environment using something as simple
as an image, or as complicated as an xml file. All samplers and planners can be added as a
plugin system, and sbp-env will auto-discover newly implemented planners or samplers that
have been added to the dedicated folders.
Figure 1 illustrates the hierarical structure of our package. Our implementation of sbp-env
define abstract interfaces for sampler and planners, from which all corresponding concrete
classes must inherit. In addition, there are classes that represent the full-body simulations of
the environments and the corresponding visualisation methods. Note that all visualisation can
be turned off on-demand, which is beneficial when users benchmark their algorithms. The
docunmentation of sbp-env is available at https://cs.tinyiu.com/sbp-env.
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