The Journal of Open Source Software

DOI: 10.21105/joss.03790

Software
= Review 7
= Repository @&
= Archive &z

Editor: Luiz Irber &7
Reviewers:
= @hiraksarkar
s QOctb

Submitted: 01 September 2021

Published: 07 May 2022

License
Authors of papers retain

copyright and release the work

under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

ROCK: digital normalization of whole genome sequencing
data

Véronique Legrand!, Thomas Kergrohen?3, Nicolas Joly*!, and Alexis
Criscuolo*>Y

1 Institut Pasteur, Université Paris Cité, Plateforme HPC, F-75015 Paris, France 2 Prédicteurs
moléculaires et nouvelles cibles en oncologie, INSERM, Gustave Roussy, Université Paris-Saclay,
Villejuif, France 3 Département de Cancérologie de I'Enfant et de I'Adolescent, Gustave Roussy,
Université Paris-Saclay, Villejuif, France 4 Institut Pasteur, Université Paris Cité, Bioinformatics and
Biostatistics Hub, F-75015 Paris, France 5 Institut Pasteur, Université Paris Cité, Plateforme de
Microbiologie Mutualisée (P2M), F-75015 Paris, France € Corresponding author

Summary

Due to advances in high-throughput sequencing technologies, generating whole genome
sequencing (WGS) data with high coverage depth (e.g. >500x%) is now becoming common,
especially when dealing with non-eukaryotic genomes. Such high coverage WGS data often
fulfills the expectation that most nucleotide positions of the genome are sequenced a sufficient
number of times without error. However, performing bioinformatic analyses (e.g. sequencing
error correction, whole genome de novo assembly) on such highly redundant data requires
substantial running times and memory footprint.

To reduce redundancy within a WGS dataset, randomly downsampling high-throughput se-
quencing reads (HTSR) is trivial. Nevertheless, this first-in-mind strategy is not efficient as
it does not minimize variation in sequencing depth, thereby eroding the coverage depth of
genome regions that are under-covered (if any). To cope with this problem, a simple greedy
algorithm, named digital normalization, was designed to efficiently downsample HTSRs over
genome regions that are over-covered (Brown et al., 2012). Given an upper-bound threshold
k> 1, it returns a subset S, such that the coverage depth induced by the HTSRs in S, is
expected to be at most ex across genome (where £>1 is a constant). By discarding highly
redundant HTSRs while retaining sufficient and homogeneous coverage depth (= ¢ek), this
algorithm strongly decreases both running times and memory required to subsequently analyze
WGS data, with often little impact on the expected results (Crusoe et al., 2015).

Interestingly, the digital normalization algorithm can be easily enhanced in several ways, so
that the final subset contains fewer but more qualitative HTSRs. Unfortunately, these different
improvements are scattered in distinct program tools. ROCK (Reducing Over-Covering K-mers)
was therefore developed with the key purpose of implementing a fast, accurate and easy-to-use
digital normalization procedure. The C++ source code is available under GNU Affero General
Public License v3.0 at https://gitlab.pasteur.fr/vlegrand /ROCK.

Statement of need

The digital normalization algorithm is based on a count-min sketch (CMS), a probabilistic data
stream structure able to store the number of occurrences of the canonical k-mers (i.e. short
oligonucleotides of fixed length k, invariant to reverse-complement) that derive from the
selected HTSRs in S, (Cormode & Muthukrishnan, 2005; Zhang et al., 2014). By means

*deceased

Legrand et al. (2022). ROCK: digital normalization of whole genome sequencing data. Journal of Open Source Software, 7(73), 3790. 1
https://doi.org/10.21105/joss.03790.

https://doi.org/10.21105/joss.03790
https://github.com/openjournals/joss-reviews/issues/3790
https://gitlab.pasteur.fr/vlegrand/ROCK
https://doi.org/10.5281/zenodo.6527091
https://luizirber.org
https://github.com/hiraksarkar
https://github.com/ctb
https://creativecommons.org/licenses/by/4.0/
https://gitlab.pasteur.fr/vlegrand/ROCK
https://doi.org/10.21105/joss.03790

The Journal of Open Source Software

of this CMS, the k-mer coverage c(r) of any new HTSR r (i.e. the k-mer coverage depth
of the corresponding genome region induced by the selected HTSRs already in S,;) can be
approximated by the median number of occurences of the k-mers derived from r. The algorithm
iterates over all HTSRs 7 to progressively fill S,: when ¢, (r) <k, r is added into S, and
the CMS is updated with every k-mers of r. At the end, the coverage depth induced by the
selected HTRs in S, is therefore expected to be upper-bounded by ¢k, where e=¢/({—k+1)
and ¢ is the average HTSR length. This initial version of the algorithm can be run using either
the Python program normalize-by-median from the package khmer (Crusoe et al., 2015),
the Java program BBnorm from the package BBTools (Bushnell, 2014) or the C++ program
BigNorm (Wedemeyer et al., 2017).

Of note, since the HTSRs are selected stepwise, the digital normalization algorithm may be
improved by first considering the longest HTSRs, therefore yielding a subset S, containing
quite less HTSRs. In a similar fashion, the input HTSRs may also be first sorted according
to their decreasing quality, estimated as the sum of Phred scores. Such a preliminary sorting
results in an optimized subset S, containing long and high-quality HTSRs. This quality-based
sorting step can be set when performing the particular normalization procedure implemented
in the program ORNA (Durai & Schulz, 2019).

Finally, given a small lower-bound threshold k' (< k), the digital normalization approach can
be easily extended to return a subset S, C S, that does not contain the HTSRs with k-mer
coverage lesser than x’. By means of the CMS that stores the number of occurences of all
canonical k-mers deriving from Sy, every HTSR r such that ¢ (r) <&’ is simply discarded,
therefore yielding a final subset S, whose overall coverage depth lies between ¢k’ and
ek. This second-pass strategy thus discards HTSRs containing many infrequent k-mers,
e.g. incorrectly sequenced, artefactual or contaminating HTSRs. Unfortunately, this useful
approach is implemented by a few program tools only, e.g. BBnorm.

The main purpose of ROCK is to pool these complementary strategies to obtain a complete
and efficient digital normalization procedure. It was designed to be used as a preprocessing
step prior to performing fast genome de novo assembly. ROCK is a command-line program that
may consider up to 15 input FASTQ files containing HTSRs from different single-end (SE)
or paired-end (PE) sequencing. Both lower and upper thresholds " and x can be set by the
user, as well as the length k£ <31. As the CMS size is a key parameter to obtain fast running
times while keeping accurate results (see Implementation), ROCK is also able to automatically
calculate it, provided that the number of distinct canonical k-mers is specified.

Implementation

ROCK first reads the input FASTQ file(s) to store the location of each HTSR into a container
M(z][y] based on std: :map, where MIz][y] corresponds to the yth SE/PE HTSR(s) with the
quality score x (i.e. the sum of Phred scores). Each entry M[z][y] contains the minimum
necessary information to quickly get the associated SE/PE HTSR(s), i.e. the index of the
corresponding file(s) and the index (i.e. offset from the start of the file) of the SE/PE HTSR(s).
Using such a structure enables to quickly traverse every HTSR in their decreasing quality order.
However, as each traversed HTSR is read using its offset-related values stored in M[z][y],
input FASTQ files should be uncompressed.

The CMS is a two-dimensional Axm array Cli][j], for which each of the A rows is associated
to a mod prime hashing function h; on [0,m], with m=UINT_MAX (i.e. 252 —1). Every k-mer
is associated with one entry CJi][j] for each row i, where j is the hashing value returned by h;
for that k-mer. To add a canonical k-mer occurence into the CMS, each of its A associated
entries is incremented by one. As a consequence, when x <255, the CMS is a two-dimensional
array of unsigned char with a memory footprint of 4\ Gb; when k> 255, the unsigned short
type is used, with twice RAM usage.

Legrand et al. (2022). ROCK: digital normalization of whole genome sequencing data. Journal of Open Source Software, 7(73), 3790. 2
https://doi.org/10.21105/joss.03790.

https://doi.org/10.21105/joss.03790

The Journal of Open Source Software

By definition, the number 1 of occurences of any given canonical k-mer in the CMS is expected
to be the minimum value 77 among the A\ associated entries. However, 1 can be strictly higher
than the true number 7 of occurences with a probability ppp (Cormode & Muthukrishnan,
2005), henceforth a false positive (FP) probability. Following Kim et al. (2019), when A=1,
the probability that an arbitrary entry of C is strictly higher than a threshold 6 after inserting n
distinct k-mers is mg , =13 4 by 1/m(2), where b, , is the probability mass function of the
binomial distribution B(n,p). Therefore, one gets pep =), with 0=k (or 0=k’ if k' #0).
By default, ROCK uses A=4 and a FP probability cutoff 7="5%, which can cope with up to
n =10 billions distinct canonical k-mers while verifying ppp <7 with any x> «x’> 1. However,
when the number n of distinct canonical k-mers is provided by the user, ROCK automatically
computes the smallest integer A such that wé\m <7, which often results in A=1 with WGS
data from small genomes (see Example).

After instantiating a CMS with all entries set to 0, ROCK performs the digital normalization
procedure by traversing M[z][y] from the highest to the lowest quality x. For every SE/PE
HTSR(s) r, the number « of canonical k-mer occurences 7)<« is obtained by querying the
CMS, and next compared to the total number 8 of canonical k-mers. If 2a > 3, then the
median of the k-mer occurence values is strictly higher than x, and r is/are not selected;
otherwise, r is/are selected and the corresponding k-mers are added in the CMS. When «'#£0,
the second pass is next performed on the selected HTSRs following the same approach. ROCK
runs the entire procedure using only a unique thread. At the end, all selected HTSRs are
written into FASTQ-formatted output file(s). Of note, to avoid mixing up HTSRs that derive
from different WGS strategies (e.g. different insert sizes), each input file corresponds to its
own output file.

Example

To illustrate the performances of ROCK on a real-case high coverage WGS dataset, we considered
the lllumina PE sequencing (run accession SRR2079909) of the Clostridium botulinum ATCC
9564 genome (assembly accession GCA_001273225), of length [= 3,813,606 base pairs
(bps). The two FASTQ files were first processed using AlienTrimmer (Criscuolo & Brisse,
2013) to trim off 5'/3" regions containing many sequencing errors (i.e. Phred score cutoff
@@ =20) or stretches of identical nucleotides. After discarding too short (i.e. <100 bps) and
unpaired HTSRs, a total of 4,973,401 PE HTSRs remained (2,756,008,939 bps, average length
£=277 bps), corresponding to a coverage depth of ~722x.

To reduce this high coverage depth to ¢ =50x, ROCK (v1.9.6) was run with k=25 and
k=c/e~45. To assess the optimal CMS size A, the total number n= 105,584,331 of distinct
canonical k-mers was estimated using ntCard (Mohamadi et al., 2017), and next specified to
ROCK, leading to A=1. In theory, using k=45 is expected to yield a subset of ¢l/(2¢)~ 344,000
PE HTSRs totaling ¢l~2 191 Mbps. Obtained results are summarized in Table 1.

Table 1: Running times (min:sec), and numbers of PE HTSRs and corresponding base pairs (bps)
returned by ROCK (on 1 thread) with k=45 and varying «’ values.

run. time no. PE HTSRs no. bps
K'=0 3:16 424,040 244,188,971
K'=2 3:22 386,665 227,069,995
K'=4 3:23 371,834 220,241,468
K'=6 3:24 370,336 219,612,591
K'=8 3:24 369,994 219,471,025

For comparison sake, comparable standard digital normalizations (k=45 and k=25) were also
carried out on the same computer (AMD Epyc 2.2 GHz processor, 128 Gb RAM) using other

Legrand et al. (2022). ROCK: digital normalization of whole genome sequencing data. Journal of Open Source Software, 7(73), 3790. 3
https://doi.org/10.21105/joss.03790.

https://www.ebi.ac.uk/ena/browser/view/SRR2079909
https://www.ebi.ac.uk/ena/browser/view/GCA_001273225.1
https://doi.org/10.21105/joss.03790

The Journal of Open Source Software

dedicated tools (see Statement of need). They returned slightly larger subsets, containing
from 498,899 (275 Mbps; BBnorm) to 693,978 (367 Mbps; normalize-by-median) PE HTSRs,
with slower running times as compared to ROCK, varying from 5:17 (BBnorm on 12 threads) to
21:29 (normalize-by-median).

Authors’ contribution

AC devised the project, the main conceptual ideas and algorithmic improvements. VL coded
most parts of ROCK. NJ implemented the data structures with VL, and participated to the
coding. TK and VL ran benchmarks to assess and improve the overall performance of ROCK.
All authors provided critical feedback to optimize the program. AC wrote the manuscript in
consultation with VL and TK.

References

Brown, C. T., Howe, A., Zhang, Q., Pyrkosz, A. B., & Brom, Y. H. (2012). A Reference-
Free Algorithm for Computational Normalization of Shotgun Sequencing Data. arXiv,
1203.4802v2. https://arxiv.org/abs/1203.4802v2

Bushnell, B. (2014). BBnorm: Kmer-based error-correction and normalization tool (from the
BBTools package). In SourceForge repository. https://sourceforge.net/projects/bbmap/

Cormode, G., & Muthukrishnan, S. (2005). An Improved Data Stream Summary: The Count-
Min Sketch and its Applications. Journal of Algorithms, 55, 29-38. https://doi.org/10.
1016//j.jalgor.2003.12.001

Criscuolo, A., & Brisse, S. (2013). AlienTrimmer: a tool to quickly and accurately trim off
multiple short contaminant sequences from high-throughput sequencing reads. Genomics,
102(5-6), 500-506. https://doi.org/10.1016/].ygeno.2013.07.011

Crusoe, M. R., Alameldin, H. F., Awad, S., Boucher, E., Caldwell, A., Cartwright, R.,
Charbonneau, A., Constantinides, B., Edvenson, G., Fay, S., Fenton, J., Fenzl, T., Fish, J.,
Garcia-Gutierrez, L., Garland, P., Gluck, J., Gonzélez, |., Guermond, S., Guo, J., .. Brown,
C. T. (2015). The khmer software package: enabling efficient nucleotide sequence analysis
[version 1; peer review: 2 approved, 1 approved with reservations]. FI000Research, 4, 900.
https://doi.org/10.12688/f1000research.6924.1

Durai, D. A., & Schulz, M. H. (2019). Improving in-silico normalization using read weights.
Scientific Reports, 9, 5133. https://doi.org/10.1038/s41598-019-41502-9

Kim, K., Jeong, Y., Lee, Y., & Lee, S. (2019). Analysis of Counting Bloom Filters Used for
Count Thresholding. Electronics, 8(7), 779. https://doi.org/10.3390/electronics8070779

Mohamadi, H., Khan, H., & Birol, I. (2017). ntCard: a streaming algorithm for cardinality
estimation in genomics data. Bioinformatics, 33(9), 1324-1330. https://doi.org/10.1093/
bioinformatics/btw832

Wedemeyer, A., Kliemann, L., Srivastav, A., Schielke, C., Reusch, T. B., & Rosenstiel, P.
(2017). An improved filtering algorithm for big read datasets and its application to single-cell
assembly. BMC Bioinformatics, 18, 324. https://doi.org/10.1186/s12859-017-1724-7

Zhang, Q., Pell, J., Canino-Koning, R., Howe, A. C., & Brown, C. T. (2014). These Are Not the
K-mers You Are Looking For: Efficient Online K-mer Counting Using a Probabilistic Data
Structure. PLoS ONE, 9(7), e101271. https://doi.org/10.1371/journal.pone.0101271

Legrand et al. (2022). ROCK: digital normalization of whole genome sequencing data. Journal of Open Source Software, 7(73), 3790. 4
https://doi.org/10.21105/joss.03790.

https://arxiv.org/abs/1203.4802v2
https://sourceforge.net/projects/bbmap/
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.ygeno.2013.07.011
https://doi.org/10.12688/f1000research.6924.1
https://doi.org/10.1038/s41598-019-41502-9
https://doi.org/10.3390/electronics8070779
https://doi.org/10.1093/bioinformatics/btw832
https://doi.org/10.1093/bioinformatics/btw832
https://doi.org/10.1186/s12859-017-1724-7
https://doi.org/10.1371/journal.pone.0101271
https://doi.org/10.21105/joss.03790

	Summary
	Statement of need
	Implementation
	Example
	Authors’ contribution
	References

