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gym-saturation is an OpenAI Gym (Brockman et al., 2016) environment for reinforcement
learning (RL) agents capable of proving theorems. Currently, only theorems written in a
formal language of the Thousands of Problems for Theorem Provers (TPTP) library (Sutcliffe,
2017) in clausal normal form (CNF) are supported. gym-saturation implements the ‘given
clause’ algorithm (similar to the one used in Vampire (Kovács & Voronkov, 2013) and E
Prover (Schulz et al., 2019)). Being written in Python, gym-saturation was inspired by PyRes
(Schulz & Pease, 2020). In contrast to the monolithic architecture of a typical Automated
Theorem Prover (ATP), gym-saturation gives different agents opportunities to select clauses
themselves and train from their experience. Combined with a particular agent, gym-saturation
can work as an ATP. Even with a non trained agent based on heuristics, gym-saturation can
find refutations for 688 (of 8257) CNF problems from TPTP v7.5.0.

Statement of need
Current applications of RL to saturation-based ATPs like Enigma (Jakubuv et al., 2020) or
Deepire (Suda, 2021) are similar in that the environment and the agent are not separate pieces
of software but parts of larger systems that are hard to disentangle. The same is true for
non saturation-based RL-friendly provers too (e.g. lazyCoP, Rawson & Reger (2021)). This
monolithic approach hinders free experimentation with novel machine learning (ML) models
and RL algorithms and creates unnecessary complications for ML and RL experts willing to
contribute to the field. In contrast, for interactive theorem provers, projects like HOList
(Bansal, Loos, Rabe, Szegedy, & Wilcox, 2019) or GamePad (Huang et al., 2019) separate the
concepts of environment and agent. Such modular architecture may lead to the development
of easily comparable agents based on diverse approaches (see, e.g. Paliwal et al. (2020)
or Bansal, Loos, Rabe, & Szegedy (2019)). gym-saturation is an attempt to implement a
modular environment-agent architecture of an RL-based ATP. In addition, some RL empowered
saturation ATPs are not accompanied with their source code (Abdelaziz et al., 2022), while
gym-saturation is open-source software.

Usage example
Suppose we want to prove an extremely simple theorem with a very basic agent. We can do
that in the following way:

# first we create and reset a OpenAI Gym environment

from importlib.resources import files

import gym

env = gym.make(

”gym_saturation:saturation-v0”,

# we will try to find a proof shorter than 10 steps

step_limit=10,
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# for a classical syllogism about Socrates

problem_list=[

files(”gym_saturation”).joinpath(

”resources/TPTP-mock/Problems/TST/TST003-1.p”

)

],

)

env.reset()

# we can render the environment (that will become the beginning of the proof)

print(”starting hypotheses:”)

print(env.render(”human”))

# our 'age' agent will always select clauses for inference

# in the order they appeared in current proof attempt

action = 0

done = False

while not done:

observation, reward, done, info = env.step(action)

action += 1

# SaturationEnv has an additional method

# for extracting only clauses which became parts of the proof

# (some steps were unnecessary to find the proof)

print(”refutation proof:”)

print(env.tstp_proof)

print(f”number of attempted steps: {action}”)

The output of this script includes a refutation proof found:

starting hypotheses:

cnf(p_imp_q, hypothesis, ~man(X0) | mortal(X0)).

cnf(p, hypothesis, man(socrates)).

cnf(q, hypothesis, ~mortal(socrates)).

refutation proof:

cnf(_0, hypothesis, mortal(socrates), inference(resolution, [], [p_imp_q, p])).

cnf(_2, hypothesis, $false, inference(resolution, [], [q, _0])).

number of attempted steps: 6

Architecture
gym-saturation includes several sub-packages:

• parsing (happens during env.reset() in example code snippet)
• logic operations (happen during env.step(action) in the example)
• AI Gym environment implementation
• agent testing (a bit more elaborated version of the while loop from the examle)

gym-saturation relies on a deduction system of four rules which is known to be refutationally
complete (Brand, 1975):

C1 ∨A1, C2 ∨ ¬A2

σ (C1 ∨ C2)
, σ = mgu (A1, A2) (resolution)

C1 ∨ s ≈ t, C2 ∨ L [r]

σ (L [t] ∨ C1 ∨ C2)
, σ = mgu (s, r) (paramodulation)
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C ∨A1 ∨A2

σ (C ∨ L1)
, σ = mgu (A1, A2) (factoring)

C ∨ s 6≈ t

σ (C)
, σ = mgu (s, t) (reflexivity resolution)

where C,C1, C2 are clauses, A1, A2 are atomic formulae, L is a literal, r, s, t are terms, and σ
is a substitution (most general unifier). L [t] is a result of substituting the term t in L [r] for
the term r at only one chosen position.

For parsing, we use the LARK parser (Shinan, 2021). We represent the clauses as Python classes
forming tree-like structures. gym-saturation also includes a JSON serializer/deserializer for
those trees. For example, a TPTP clause

cnf(a2,hypothesis,

( ~ q(a) | f(X) = X )).

becomes

Clause(

literals=[

Literal(

negated=True,

atom=Predicate(

name=”q”, arguments=[Function(name=”a”, arguments=[])]

),

),

Literal(

negated=False,

atom=Predicate(

name=”=”,

arguments=[

Function(name=”f”, arguments=[Variable(name=”X”)]),

Variable(name=”X”),

],

),

),

],

label=”a2”,

)

This grammar serves as the glue for gym-saturation sub-packages, which are, in principle,
independent of each other. After switching to another parser or another deduction system,
the agent testing script won’t break, and RL developers won’t need to modify their agents for
compatibility (for them, the environment will have the same standard OpenAI Gym API).
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Figure 1: A diagram showing interactions between four main subpackages of gym-saturation: 1)
parsing; 2) logic operations (including the given clause algorithm); 3) OpenAI Gym Env implementation;
4) the agent testing script.

Agent testing is a simple episode pipeline (see Figure 1). It is supposed to be run in parallel
(e.g. using GNU Parallel, Tange (2021)) for a testing subset of problems. See the following
table for the testing results of two popular heuristic-based agents on TPTP v7.5.0 (trained RL
agents should strive to be more successful than those primitive baselines):

size agent age agent size&age agent
proof found 509 206 688
step limit 1385 35 223
out of memory 148 149 148
5 min time out 6215 7867 7198
total 8257 8257 8257

size agent is an agent which always selects the shortest clause.

age agent is an agent which always selects the clause which arrived first to the set of
unprocessed clauses (‘the oldest one’).

size&age agent is an agent which selects the shortest clause five times in a row and then one
time — the oldest one.

‘Step limit’ means an agent didn’t find proof after 1000 steps (the longest proof found consists
of 287 steps). This can work as a ‘soft timeout’.
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Mentions
At the moment of writing this paper, gym-saturation was used by its author during their PhD
studies for creating experimental RL-based ATPs.
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