
gym-saturation: an OpenAI Gym environment for
saturation provers
Boris Shminke 1

1 Laboratoire J.A. Dieudonné, CNRS and Université Côte d’Azur, France
DOI: 10.21105/joss.03849

Software
• Review
• Repository
• Archive

Editor:
Reviewers:

• @lutzhamel
• @quickbeam123

Submitted: 01 October 2021
Published: 03 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

gym-saturation is an OpenAI Gym (Brockman et al., 2016) environment for reinforcement
learning (RL) agents capable of proving theorems. Currently, only theorems written in a
formal language of the Thousands of Problems for Theorem Provers (TPTP) library (Sutcliffe,
2017) in clausal normal form (CNF) are supported. gym-saturation implements the ‘given
clause’ algorithm (similar to the one used in Vampire (Kovács & Voronkov, 2013) and E
Prover (Schulz et al., 2019)). Being written in Python, gym-saturation was inspired by PyRes
(Schulz & Pease, 2020). In contrast to the monolithic architecture of a typical Automated
Theorem Prover (ATP), gym-saturation gives different agents opportunities to select clauses
themselves and train from their experience. Combined with a particular agent, gym-saturation
can work as an ATP. Even with a non trained agent based on heuristics, gym-saturation can
find refutations for 688 (of 8257) CNF problems from TPTP v7.5.0.

Statement of need
Current applications of RL to saturation-based ATPs like Enigma (Jakubuv et al., 2020) or
Deepire (Suda, 2021) are similar in that the environment and the agent are not separate pieces
of software but parts of larger systems that are hard to disentangle. The same is true for
non saturation-based RL-friendly provers too (e.g. lazyCoP, Rawson & Reger (2021)). This
monolithic approach hinders free experimentation with novel machine learning (ML) models
and RL algorithms and creates unnecessary complications for ML and RL experts willing to
contribute to the field. In contrast, for interactive theorem provers, projects like HOList
(Bansal, Loos, Rabe, Szegedy, & Wilcox, 2019) or GamePad (Huang et al., 2019) separate the
concepts of environment and agent. Such modular architecture may lead to the development
of easily comparable agents based on diverse approaches (see, e.g. Paliwal et al. (2020)
or Bansal, Loos, Rabe, & Szegedy (2019)). gym-saturation is an attempt to implement a
modular environment-agent architecture of an RL-based ATP. In addition, some RL empowered
saturation ATPs are not accompanied with their source code (Abdelaziz et al., 2022), while
gym-saturation is open-source software.

Usage example
Suppose we want to prove an extremely simple theorem with a very basic agent. We can do
that in the following way:

first we create and reset a OpenAI Gym environment

from importlib.resources import files

import gym

env = gym.make(

”gym_saturation:saturation-v0”,

we will try to find a proof shorter than 10 steps

step_limit=10,

Shminke. (2022). gym-saturation: an OpenAI Gym environment for saturation provers. Journal of Open Source Software, 7(71), 3849.
https://doi.org/10.21105/joss.03849.

1

https://doi.org/10.21105/joss.03849
https://github.com/openjournals/joss-reviews/issues/3849
https://github.com/inpefess/gym-saturation
https://doi.org/10.5281/zenodo.6324282
https://github.com/lutzhamel
https://github.com/quickbeam123
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03849

for a classical syllogism about Socrates

problem_list=[

files(”gym_saturation”).joinpath(

”resources/TPTP-mock/Problems/TST/TST003-1.p”

)

],

)

env.reset()

we can render the environment (that will become the beginning of the proof)

print(”starting hypotheses:”)

print(env.render(”human”))

our 'age' agent will always select clauses for inference

in the order they appeared in current proof attempt

action = 0

done = False

while not done:

observation, reward, done, info = env.step(action)

action += 1

SaturationEnv has an additional method

for extracting only clauses which became parts of the proof

(some steps were unnecessary to find the proof)

print(”refutation proof:”)

print(env.tstp_proof)

print(f”number of attempted steps: {action}”)

The output of this script includes a refutation proof found:

starting hypotheses:

cnf(p_imp_q, hypothesis, ~man(X0) | mortal(X0)).

cnf(p, hypothesis, man(socrates)).

cnf(q, hypothesis, ~mortal(socrates)).

refutation proof:

cnf(_0, hypothesis, mortal(socrates), inference(resolution, [], [p_imp_q, p])).

cnf(_2, hypothesis, $false, inference(resolution, [], [q, _0])).

number of attempted steps: 6

Architecture
gym-saturation includes several sub-packages:

• parsing (happens during env.reset() in example code snippet)
• logic operations (happen during env.step(action) in the example)
• AI Gym environment implementation
• agent testing (a bit more elaborated version of the while loop from the examle)

gym-saturation relies on a deduction system of four rules which is known to be refutationally
complete (Brand, 1975):

C1 ∨A1, C2 ∨ ¬A2

σ (C1 ∨ C2)
, σ = mgu (A1, A2) (resolution)

C1 ∨ s ≈ t, C2 ∨ L [r]

σ (L [t] ∨ C1 ∨ C2)
, σ = mgu (s, r) (paramodulation)

Shminke. (2022). gym-saturation: an OpenAI Gym environment for saturation provers. Journal of Open Source Software, 7(71), 3849.
https://doi.org/10.21105/joss.03849.

2

https://doi.org/10.21105/joss.03849

C ∨A1 ∨A2

σ (C ∨ L1)
, σ = mgu (A1, A2) (factoring)

C ∨ s 6≈ t

σ (C)
, σ = mgu (s, t) (reflexivity resolution)

where C,C1, C2 are clauses, A1, A2 are atomic formulae, L is a literal, r, s, t are terms, and σ
is a substitution (most general unifier). L [t] is a result of substituting the term t in L [r] for
the term r at only one chosen position.

For parsing, we use the LARK parser (Shinan, 2021). We represent the clauses as Python classes
forming tree-like structures. gym-saturation also includes a JSON serializer/deserializer for
those trees. For example, a TPTP clause

cnf(a2,hypothesis,

(~ q(a) | f(X) = X)).

becomes

Clause(

literals=[

Literal(

negated=True,

atom=Predicate(

name=”q”, arguments=[Function(name=”a”, arguments=[])]

),

),

Literal(

negated=False,

atom=Predicate(

name=”=”,

arguments=[

Function(name=”f”, arguments=[Variable(name=”X”)]),

Variable(name=”X”),

],

),

),

],

label=”a2”,

)

This grammar serves as the glue for gym-saturation sub-packages, which are, in principle,
independent of each other. After switching to another parser or another deduction system,
the agent testing script won’t break, and RL developers won’t need to modify their agents for
compatibility (for them, the environment will have the same standard OpenAI Gym API).

Shminke. (2022). gym-saturation: an OpenAI Gym environment for saturation provers. Journal of Open Source Software, 7(71), 3849.
https://doi.org/10.21105/joss.03849.

3

https://doi.org/10.21105/joss.03849

Figure 1: A diagram showing interactions between four main subpackages of gym-saturation: 1)
parsing; 2) logic operations (including the given clause algorithm); 3) OpenAI Gym Env implementation;
4) the agent testing script.

Agent testing is a simple episode pipeline (see Figure 1). It is supposed to be run in parallel
(e.g. using GNU Parallel, Tange (2021)) for a testing subset of problems. See the following
table for the testing results of two popular heuristic-based agents on TPTP v7.5.0 (trained RL
agents should strive to be more successful than those primitive baselines):

size agent age agent size&age agent
proof found 509 206 688
step limit 1385 35 223
out of memory 148 149 148
5 min time out 6215 7867 7198
total 8257 8257 8257

size agent is an agent which always selects the shortest clause.

age agent is an agent which always selects the clause which arrived first to the set of
unprocessed clauses (‘the oldest one’).

size&age agent is an agent which selects the shortest clause five times in a row and then one
time — the oldest one.

‘Step limit’ means an agent didn’t find proof after 1000 steps (the longest proof found consists
of 287 steps). This can work as a ‘soft timeout’.

Shminke. (2022). gym-saturation: an OpenAI Gym environment for saturation provers. Journal of Open Source Software, 7(71), 3849.
https://doi.org/10.21105/joss.03849.

4

https://doi.org/10.21105/joss.03849

Mentions
At the moment of writing this paper, gym-saturation was used by its author during their PhD
studies for creating experimental RL-based ATPs.

Acknowledgements
This work has been supported by the French government, through the 3IA Côte d’Azur
Investments in the Future project managed by the National Research Agency (ANR) with the
reference number ANR-19-P3IA-0002. This work was performed using HPC resources from
GENCI-IDRIS (Grant 2021-AD011013125).

References
Abdelaziz, I., Crouse, M., Makni, B., Austel, V., Cornelio, C., Ikbal, S., Kapanipathi, P.,

Makondo, N., Srinivas, K., Witbrock, M., & Fokoue, A. (2022). Learning to guide a
saturation-based theorem prover. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2022.3140382

Bansal, K., Loos, S. M., Rabe, M. N., & Szegedy, C. (2019). Learning to reason in large
theories without imitation. CoRR, abs/1905.10501. http://arxiv.org/abs/1905.10501

Bansal, K., Loos, S. M., Rabe, M. N., Szegedy, C., & Wilcox, S. (2019). HOList: An
environment for machine learning of higher order logic theorem proving. In K. Chaudhuri
& R. Salakhutdinov (Eds.), Proceedings of the 36th international conference on machine
learning, ICML 2019, 9-15 june 2019, long beach, california, USA (Vol. 97, pp. 454–463).
PMLR. http://proceedings.mlr.press/v97/bansal19a.html

Brand, D. (1975). Proving theorems with the modification method. SIAM Journal on
Computing, 4(4), 412–430. https://doi.org/10.1137/0204036

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAI gym. CoRR, abs/1606.01540. http://arxiv.org/abs/1606.01540

Huang, D., Dhariwal, P., Song, D., & Sutskever, I. (2019). GamePad: A learning environment
for theorem proving. 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. https://openreview.net/forum?id=r1xwKoR9Y7

Jakubuv, J., Chvalovský, K., Olsák, M., Piotrowski, B., Suda, M., & Urban, J. (2020). ENIGMA
anonymous: Symbol-independent inference guiding machine (system description). In N.
Peltier & V. Sofronie-Stokkermans (Eds.), Automated reasoning - 10th international joint
conference, IJCAR 2020, paris, france, july 1-4, 2020, proceedings, part II (Vol. 12167,
pp. 448–463). Springer. https://doi.org/10.1007/978-3-030-51054-1/_29

Kovács, L., & Voronkov, A. (2013). First-order theorem proving and vampire. In N. Sharygina
& H. Veith (Eds.), Computer aided verification - 25th international conference, CAV 2013,
saint petersburg, russia, july 13-19, 2013. proceedings (Vol. 8044, pp. 1–35). Springer.
https://doi.org/10.1007/978-3-642-39799-8/_1

Paliwal, A., Loos, S. M., Rabe, M. N., Bansal, K., & Szegedy, C. (2020). Graph representations
for higher-order logic and theorem proving. The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, the Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, the Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, 2967–2974.
https://aaai.org/ojs/index.php/AAAI/article/view/5689

Rawson, M., & Reger, G. (2021). lazyCoP: Lazy paramodulation meets neurally guided search.
In A. Das & S. Negri (Eds.), Automated reasoning with analytic tableaux and related

Shminke. (2022). gym-saturation: an OpenAI Gym environment for saturation provers. Journal of Open Source Software, 7(71), 3849.
https://doi.org/10.21105/joss.03849.

5

https://doi.org/10.1109/TPAMI.2022.3140382
http://arxiv.org/abs/1905.10501
http://proceedings.mlr.press/v97/bansal19a.html
https://doi.org/10.1137/0204036
http://arxiv.org/abs/1606.01540
https://openreview.net/forum?id=r1xwKoR9Y7
https://doi.org/10.1007/978-3-030-51054-1/_29
https://doi.org/10.1007/978-3-642-39799-8/_1
https://aaai.org/ojs/index.php/AAAI/article/view/5689
https://doi.org/10.21105/joss.03849

methods - 30th international conference, TABLEAUX 2021, birmingham, UK, september
6-9, 2021, proceedings (Vol. 12842, pp. 187–199). Springer. https://doi.org/10.1007/
978-3-030-86059-2/_11

Schulz, S., Cruanes, S., & Vukmirovic, P. (2019). Faster, higher, stronger: E 2.3. In
P. Fontaine (Ed.), Automated deduction - CADE 27 - 27th international conference on
automated deduction, natal, brazil, august 27-30, 2019, proceedings (Vol. 11716, pp.
495–507). Springer. https://doi.org/10.1007/978-3-030-29436-6/_29

Schulz, S., & Pease, A. (2020). Teaching automated theorem proving by example: PyRes
1.2 - (system description). In N. Peltier & V. Sofronie-Stokkermans (Eds.), Automated
reasoning - 10th international joint conference, IJCAR 2020, paris, france, july 1-4, 2020,
proceedings, part II (Vol. 12167, pp. 158–166). Springer. https://doi.org/10.1007/
978-3-030-51054-1/_9

Shinan, E. (2021). Lark-parser (Version 0.12.0). https://pypi.org/project/lark-parser/

Suda, M. (2021). Improving ENIGMA-style clause selection while learning from history. In
A. Platzer & G. Sutcliffe (Eds.), Automated deduction - CADE 28 - 28th international
conference on automated deduction, virtual event, july 12-15, 2021, proceedings (Vol.
12699, pp. 543–561). Springer. https://doi.org/10.1007/978-3-030-79876-5/_31

Sutcliffe, G. (2017). The TPTP Problem Library and Associated Infrastructure. From CNF to
TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4), 483–502.

Tange, O. (2021). GNU parallel 20210822 (’kabul’). Zenodo. https://doi.org/10.5281/zenodo.
5233953

Shminke. (2022). gym-saturation: an OpenAI Gym environment for saturation provers. Journal of Open Source Software, 7(71), 3849.
https://doi.org/10.21105/joss.03849.

6

https://doi.org/10.1007/978-3-030-86059-2/_11
https://doi.org/10.1007/978-3-030-86059-2/_11
https://doi.org/10.1007/978-3-030-29436-6/_29
https://doi.org/10.1007/978-3-030-51054-1/_9
https://doi.org/10.1007/978-3-030-51054-1/_9
https://pypi.org/project/lark-parser/
https://doi.org/10.1007/978-3-030-79876-5/_31
https://doi.org/10.5281/zenodo.5233953
https://doi.org/10.5281/zenodo.5233953
https://doi.org/10.21105/joss.03849

	Statement of need
	Usage example
	Architecture
	Mentions
	Acknowledgements
	References

