
piecewise-regression (aka segmented regression) in
Python
Charlie Pilgrim1, 2

1 Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick,
Coventry, UK 2 The Alan Turing Institute, London, UK

DOI: 10.21105/joss.03859

Software
• Review
• Repository
• Archive

Editor: Gabriela Alessio Robles
Reviewers:

• @vyasr
• @htjb
• @Ebedthan

Submitted: 04 October 2021
Published: 02 December 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Piecewise regression (also known as segmented regression, broken-line regression, or break-
point analysis) fits a linear regression model to data that includes one or more breakpoints
where the gradient changes. The piecewise-regression Python package uses the approach
described by Muggeo (Muggeo, 2003), where the breakpoint positions and the straight line
models are simultaneously fit using an iterative method. This easy-to-use package includes
an automatic comprehensive statistical analysis that gives confidence intervals for all model
variables and hypothesis testing for the existence of breakpoints.

Statement of Need

A common problem in many fields is to fit a continuous straight line model to data that includes
some change(s) in gradient known as breakpoint(s). Examples include investigating medical
interventions (Wagner et al., 2002), ecological thresholds (Toms & Lesperance, 2003), and ge-
ological phase transitions (Ryan et al., 2002). Fitting such models involves the global problem
of finding estimates for the breakpoint positions and the local problem of fitting line segments
given breakpoints. Possible approaches involve using linear regression to fit line segments to-
gether with a global optimisation algorithm to find breakpoints—for example, an evolutionary
algorithm as in the pwlf python package (Jekel & Venter, 2019). Or one could take a non-
linear least-squares approach using scipy (Virtanen et al., 2020) or the lmfit python package
(Newville et al., 2016). Muggeo (Muggeo, 2003) derived an alternative method whereby the
breakpoint positions and the line segment models are fitted simultaneously using an iterative
method, which is computationally efficient and allows for robust statistical analysis. Many
R packages implement this method, including the segmented R package written by Muggeo
himself (Muggeo & others, 2008). However, before the piecewise-regression package,
there were not comparable resources in Python.

Example

An example plot is shown in Figure 1. Data was generated with 3 breakpoints and some noise,
and a model was then fit to that data. The plot shows the maximum likelihood estimators
for the straight line segments and breakpoint positions. The package automatically carries
out a Davies hypothesis test (Davies, 1987) for the existence of at least 1 breakpoint, in this
example finding strong evidence for breakpoints with p < 0.001.

Pilgrim, C., (2021). piecewise-regression (aka segmented regression) in Python. Journal of Open Source Software, 6(68), 3859. https:
//doi.org/10.21105/joss.03859

1

https://doi.org/10.21105/joss.03859
https://github.com/openjournals/joss-reviews/issues/3859
https://github.com/chasmani/piecewise-regression
https://doi.org/10.5281/zenodo.5742317
https://galessiorob.github.io/index.html
https://github.com/vyasr
https://github.com/htjb
https://github.com/Ebedthan
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03859
https://doi.org/10.21105/joss.03859


Figure 1: An example model fit (red line) to data (grey markers). The estimated breakpoint positions
(blue lines) and confidence intervals (shaded blue regions) are shown. The data was generated using
a piecewise linear model with a constant level of Gaussian noise. For example, this could represent
observations with a sampling error of some physical process that undergoes phase transitions.

How It Works

We follow here the derivation by Muggeo (Muggeo, 2003). The general form of the model
with one breakpoint is

y = αx+ c+ β(x− ψ)H(x− ψ) + ζ , (1)

where given some data, x, y, we are trying to estimate the gradient of the first segment, α, the
intercept of the first segment, c, the change in gradient from the first to second segments, β,
and the breakpoint position, ψ. H is the Heaviside step function and ζ is a noise term. This
cannot be solved directly through linear regression as the relationship is non-linear. We can
take a linear approximation by a Taylor expansion around some initial guess for the breakpoint,
ψ(0),

y ≈ αx+ c+ β(x− ψ(0))H(x− ψ(0))− β(ψ − ψ(0))H(x− ψ(0)) + ζ . (2)

This is now a linear relationship and we can find a new breakpoint estimate, ψ(1), through or-
dinary linear regression using the statsmodels python package (Seabold & Perktold, 2010).
We iterate in this way until the breakpoint estimate converges, at which point we stop the
algorithm. If considering multiple breakpoints, the same approach is followed using a multi-
variate Taylor expansion around an initial guess for each of the breakpoints.

Pilgrim, C., (2021). piecewise-regression (aka segmented regression) in Python. Journal of Open Source Software, 6(68), 3859. https:
//doi.org/10.21105/joss.03859

2

https://doi.org/10.21105/joss.03859
https://doi.org/10.21105/joss.03859


Muggeo’s iterative algorithm is not guaranteed to converge on a globally optimal solution.
Instead, it can converge to a local optimum or diverge. To address this limitation, we also
implement bootstrap restarting (Wood, 2001), again following Muggeo’s approach (Muggeo
& others, 2008). The bootstrap restarting algorithm generates a non-parametric bootstrap of
the data through resampling, which is then used to find new breakpoint values that may find
a better global solution. This is repeated several times to escape local optima.

Model Selection

The standard algorithm finds a good fit with a given number of breakpoints. In some instances
we might not know how many breakpoints to expect in the data. We provide a tool to compare
models with different numbers of breakpoints based on minimising the Bayesian Information
Criterion (Wit et al., 2012), which takes into account the value of the likelihood function
while including a penalty for the number of model parameters, to avoid overfitting. When
applied to the example in Figure 1, a model with 3 breakpoints is the preferred choice.

Features

The package includes the following features:

• Standard fit using the iterative method described by Muggeo.
• Bootstrap restarting to escape local optima.
• Bootstrap restarting with randomised initial breakpoint guesses.
• Calculation of standard errors and confidence intervals.
• Davies hypothesis test for the existence of a breakpoint.
• Customisable plots of fits.
• Customisable plots of algorithm iterations.
• Printable summary.
• Summary data output.
• Comprehensive tests.
• Model comparision with an unknown number of breakpoints, with the best fit based on

the Bayesian information criterion.

The package can be downloaded through the Python Package Index. The full code is publicly
available on github. Documentation, including an API reference, can be found at Read The
Docs.

Acknowledgements

I acknowledge support from Thomas Hills. The work was funded by the EPSRC grant for the
Mathematics for Real-World Systems CDT at Warwick (grant number EP/L015374/1).

References

Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under
the alternative. Biometrika, 74(1), 33–43.

Jekel, C. F., & Venter, G. (2019). PWLF: A Python library for fitting 1D continuous piecewise
linear functions. URL: Https://Github. Com/Cjekel/Piecewise_linear_fit_py.

Pilgrim, C., (2021). piecewise-regression (aka segmented regression) in Python. Journal of Open Source Software, 6(68), 3859. https:
//doi.org/10.21105/joss.03859

3

https://pypi.org/project/piecewise-regression/
https://github.com/chasmani/piecewise-regression
https://piecewise-regression.readthedocs.io/en/latest/
https://piecewise-regression.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.03859
https://doi.org/10.21105/joss.03859


Muggeo, V. M. (2003). Estimating regression models with unknown break-points. Statistics
in Medicine, 22(19), 3055–3071.

Muggeo, V. M., & others. (2008). Segmented: An R package to fit regression models with
broken-line relationships. R News, 8(1), 20–25.

Newville, M., Stensitzki, T., Allen, D. B., Rawlik, M., Ingargiola, A., & Nelson, A. (2016).
LMFIT: Non-linear least-square minimization and curve-fitting for Python. Astrophysics
Source Code Library, ascl–1606.

Ryan, S. E., Porth, L. S., & Troendle, C. (2002). Defining phases of bedload transport using
piecewise regression. Earth Surface Processes and Landforms, 27(9), 971–990.

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with
Python. Proceedings of the 9th Python in Science Conference, 57, 61.

Toms, J. D., & Lesperance, M. L. (2003). Piecewise regression: A tool for identifying eco-
logical thresholds. Ecology, 84(8), 2034–2041.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–
272.

Wagner, A. K., Soumerai, S. B., Zhang, F., & Ross-Degnan, D. (2002). Segmented regression
analysis of interrupted time series studies in medication use research. Journal of Clinical
Pharmacy and Therapeutics, 27(4), 299–309.

Wit, E., Heuvel, E. van den, & Romeijn, J.-W. (2012). ‘All models are wrong...’: An intro-
duction to model uncertainty. Statistica Neerlandica, 66(3), 217–236.

Wood, S. N. (2001). Minimizing model fitting objectives that contain spurious local minima
by bootstrap restarting. Biometrics, 57(1), 240–244.

Pilgrim, C., (2021). piecewise-regression (aka segmented regression) in Python. Journal of Open Source Software, 6(68), 3859. https:
//doi.org/10.21105/joss.03859

4

https://doi.org/10.21105/joss.03859
https://doi.org/10.21105/joss.03859

	Summary
	Statement of Need
	Example
	How It Works
	Model Selection
	Features
	Acknowledgements
	References

