
Simframe: A Python Framework for Scientific
Simulations
Sebastian M. Stammler∗1 and Tilman Birnstiel1, 2

1 University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr.
1, 81679 Munich, Germany 2 Exzellenzcluster ORIGINS, Boltzmannstr. 2, D-85748 Garching,
Germany

DOI: 10.21105/joss.03882

Software
• Review
• Repository
• Archive

Editor: Bita Hasheminezhad
Reviewers:

• @schruste
• @lucaferranti

Submitted: 17 August 2021
Published: 11 January 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Simframe is a Python framework to facilitate scientific simulations. The scope of the software
is to provide a framework which can hold data fields, which can be used to integrate differential
equations, and which can read and write data files.
Conceptually, upon initialization Simframe is an empty frame that can be filled with Fields
containing data. Fields are derived from numpy.ndarrays (Harris et al., 2020), but with
extended functionality. The user can then specify differential equations to those data fields
and can set up an integrator which is integrating those fields according the given differential
equations. Therefore, Simframe can only work with data, that can be stored in NumPy arrays.
Data fields that should not be integrated themselves, but are still required for the model, can
have an update function assigned to them, according to which they will be updated once per
integration step.
Simframe contains a number of integration schemes of different orders, both for explicit and
implicit integration. Furthermore, Simframe includes methods to read and write output files.
Due to its modular structure, Simframe can be extended at will, for example, by implementing
new integration schemes and/or user-defined output formats.

Statement of need

Solving differential equations is part of the daily work of scientists. Simframe facilitates this
by providing the infrastructure: Data structures, integration schemes, and methods to write
and read output files.
On one hand, Simframe can be used to quickly solve small scientific problems, and, on the
other hand, it can be easily extended to larger projects due to its versatility and modular
structure.
Furthermore, Simframe is ideal for beginners without programming experience who are taking
their first steps in solving differential equations. It can therefore be used to design lectures
or practical courses at schools and universities, as it allows students to concentrate on the
essentials without having to write larger programs on their own.
Plenty of ODE solver packages already exist for Python, like solve_ivp or odeint in Sc
iPy’s integrate module, however, these do not provide data structures, nor input/output
capabilities. Simframe offers a flexible framework to define, group, and describe data, define

∗corresponding author

Stammler et al., (2022). Simframe: A Python Framework for Scientific Simulations. Journal of Open Source Software, 7(69), 3882. https:
//doi.org/10.21105/joss.03882

1

https://doi.org/10.21105/joss.03882
https://github.com/openjournals/joss-reviews/issues/3882
https://github.com/stammler/simframe
https://doi.org/10.5281/zenodo.5785575
https://www.linkedin.com/in/bita-hasheminezhad/
https://github.com/schruste
https://github.com/lucaferranti
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03882
https://doi.org/10.21105/joss.03882


how it is updated, use existing integrators or define new ones, and to handle writing of data
or serializing the entire simulation object, all in one modular package. Existing integrators like
solve_ivp or odeint can be used within Simframe by simply adding them to an integration
scheme.

Features

Data fields

The data fields of Simframe are subclassed NumPy ndarrays. The full NumPy functionality
can therefore be used on Simframe data fields. The ndarrays have been extended to store
additional information about differential equations or update functions and a string description
of the field. The data fields can be arranged in groups to facilitate a clear structure within
the data frame.

Integration schemes

Simframe includes a number of basic integration schemes by default (Hairer et al., 1993).
All of the implemented schemes are Runge-Kutta methods of different orders. Some of the
methods are adaptive, i.e., they are embedded Runge-Kutta methods, that return an optimal
step size for the integration variable, such that the desired accuracy is achieved. The implicit
methods require a matrix inversion that is either done directly by NumPy or by using the
GMRES solver provided by SciPy (Virtanen et al., 2020).
Here is a list of all implemented integration schemes:

Order Scheme solver
1 Euler explicit
1 Euler implicit direct
1 Euler implicit GMRES
2 Fehlberg explicit adaptive
2 Heun explicit
2 Heun-Euler explicit adaptive
2 midpoint explicit
2 midpoint implicit direct
2 Ralston explicit
3 Bogacki-Shampine explicit adaptive
3 Gottlieb-Shu explicit adaptive
3 Heun explicit
3 Kutta explicit
3 Ralston explicit
3 Strong Stability Preserving explicit
4 3/8 rule explicit
4 Ralston explicit
4 Runge-Kutta explicit
5 Cash-Karp explicit adaptive
5 Dormand-Prince explicit adaptive

Stammler et al., (2022). Simframe: A Python Framework for Scientific Simulations. Journal of Open Source Software, 7(69), 3882. https:
//doi.org/10.21105/joss.03882

2

https://doi.org/10.21105/joss.03882
https://doi.org/10.21105/joss.03882


I/O

By default Simframe has two options for storing simulation results. One is by storing the
data in a separate namespace within the Simframe object itself, useful for small simulations
to access results without writing/reading data files. Another one is by storing the data in
HDF5 data files using the h5py package (Collette, 2013).
If configured by the user, Simframe is writing dump files, from which the simulation can be
resumed, in case the program crashed unexpectedly. These dump files are serialized Simframe
objects using the dill package (McKerns et al., 2012).

Acknowledgements

The authors acknowledge funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agreement
No 714769 and funding by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under grants 361140270, 325594231, and Germany’s Excellence Strategy - EXC-
2094 - 390783311.

References

Collette, A. (2013). Python and HDF5. O’Reilly.
Hairer, E., Paul, N. S., & Wanner, G. (1993). Solving ordinary differential equations i.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78862-1
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,

D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P., …
Oliphant, T. E. (2020). Array programming with NumPy. Nature. https://doi.org/10.
1038/s41586-020-2649-2

McKerns, M. M., Strand, L., Sullivan, T., Fang, A., & Aivazis, M. A. G. (2012). Building a
framework for predictive science. https://doi.org/10.25080/majora-ebaa42b7-00d

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., … SciPy 1. 0 Contributors. (2020). SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature. https://doi.org/10.1038/s41592-019-0686-2

Stammler et al., (2022). Simframe: A Python Framework for Scientific Simulations. Journal of Open Source Software, 7(69), 3882. https:
//doi.org/10.21105/joss.03882

3

https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/majora-ebaa42b7-00d
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03882
https://doi.org/10.21105/joss.03882

	Summary
	Statement of need
	Features
	Data fields
	Integration schemes
	I/O

	Acknowledgements
	References

