
PyMPDATA v1: Numba-accelerated implementation
of MPDATA with examples in Python, Julia and
Matlab
Piotr Bartman 1, Jakub Banaśkiewicz1, Szymon Drenda1, Maciej Manna1,
Michael A. Olesik 1, Paweł Rozwoda1, Michał Sadowski 1, and Sylwester
Arabas 1,2

1 Jagiellonian University, Kraków, Poland 2 University of Illinois at Urbana-Champaign, IL, USA
DOI: 10.21105/joss.03896

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @Chiil
• @wdeconinck

Submitted: 25 October 2021
Published: 05 September 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of need
Convection-diffusion problems arise across a wide range of pure and applied research, in
particular in geosciences, aerospace engineering, and financial modelling (for an overview of
applications, see, e.g., section 1.1 in Morton (1996)). One of the key challenges in numerical
solutions of problems involving advective transport is sign preservation of the advected field
(for an overview of this and other aspects of numerical solutions to advection problems, see,
e.g., Røed (2019)). The Multidimensional Positive Definite Advection Transport Algorithm
(MPDATA) is a robust, explicit-in-time, and sign-preserving solver introduced in Smolarkiewicz
(1983) and Smolarkiewicz (1984). MPDATA has been subsequently developed into a family of
numerical schemes with numerous variants and solution procedures addressing a diverse set of
problems in geophysical fluid dynamics and beyond. For reviews of MPDATA applications and
variants, see, e.g., Smolarkiewicz & Margolin (1998) and Smolarkiewicz (2006).

The PyMPDATA project introduced herein constitutes a high-performance and multi-threaded
implementation of structured-mesh MPDATA in Python. PyMPDATA is aimed to address several
aspects which steepen the learning curve and limit collaborative usage and development of exist-
ing C++ (e.g., Jaruga et al., 2015) and Fortran (e.g., Kühnlein et al., 2019) implementations of
MPDATA. Performance on par with compiled-language implementations is targeted by employing
just-in-time (JIT) compilation using Numba (Lam et al., 2015), which translates Python code
into fast machine code using the Low Level Virtual Machine (LLVM, https://llvm.org/) compiler
infrastructure (for a discussion of another JIT implementation of MPDATA using PyPy, see Arabas
et al., 2014). PyMPDATA is engineered aiming at both performance and usability, the latter
encompassing research user’s, developer’s and maintainer’s perspectives. From researcher’s
perspective, PyMPDATA offers hassle-free installation on Linux, macOS, and Windows. It also
eliminates the compilation stage from the perspective of the user. From developer’s and
maintainer’s perspectives, PyMPDATA offers a suite of unit tests, multi-platform continuous
integration setup, seamless integration with Python development tools including debuggers,
profilers, and code analysers.

Summary
PyMPDATA interface uses NumPy for array-oriented input and output. Usage of PyMPDATA from
Julia (https://julialang.org) and Matlab (https://mathworks.com) through PyCall and the
built-in Python interoperability tools, respectively, is depicted in the PyMPDATA README
file. The appendices of the present paper include Python, Julia and Matlab minimal code
snippets covering steps needed to complete a basic PyMPDATA simulation depicted in Figure 1

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

1

https://orcid.org/0000-0003-0265-6428
https://orcid.org/0000-0002-6319-9358
https://orcid.org/0000-0003-3482-9733
https://orcid.org/0000-0003-2361-0082
https://doi.org/10.21105/joss.03896
https://github.com/openjournals/joss-reviews/issues/3896
https://github.com/atmos-cloud-sim-uj/PyMPDATA
https://doi.org/10.5281/zenodo.6934418
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/Chiil
https://github.com/wdeconinck
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03896

and based on Figure 5 from Arabas et al. (2014).

x/dx

0 5 10 15 20
y/dy

0
5

10
15

20 0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05

x/dx

0 5 10 15 20
y/dy

0
5

10
15

20 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 1: Visualisation of the initial condition (left) and simulation state after 75 timesteps (right) from
the 2D simulation for which sample codes are given in the appendices, based on Fig. 5 from Arabas et al.
(2014).

As of the current version, PyMPDATA supports homogeneous transport in one (1D), two (2D),
and three dimensions (3D) using structured meshes, optionally generalised by coordinate
transformation (Smolarkiewicz & Clark, 1986; Smolarkiewicz & Margolin, 1993). PyMPDATA

includes implementation of a subset of MPDATA variants, such as the non-oscillatory option
(Smolarkiewicz & Grabowski, 1990), the infinite-gauge variant (Margolin & Shashkov, 2006;
Smolarkiewicz & Clark, 1986), the divergent-flow option (Margolin & Smolarkiewicz, 1998;
Smolarkiewicz, 1984), the double-pass donor cell (DPDC) flavour (Beason & Margolin, 1988;
Margolin & Shashkov, 2006; Margolin & Smolarkiewicz, 1998), and the third-order-terms op-
tions (Margolin & Smolarkiewicz, 1998). It also features support for integration of Fickian-terms
in advection-diffusion problems using the pseudo-transport velocity approach (Smolarkiewicz
& Clark, 1986; Smolarkiewicz & Szmelter, 2005).

A companion package named PyMPDATA-examples contains a set of Jupyter notebooks, which
reproduce results from literature using PyMPDATA. These examples are also executed within
continuous integration runs. Several of the examples feature comparisons against analytical
solution, and these are also included in the test suite of PyMPDATA. The PyMPDATA-examples

README file includes links (badges) offering single-click deployment in the cloud using either
the Binder (https://mybinder.org) or the Colab (https://colab.research.google.com)
platforms.

A separate project named numba-mpi has been developed to set the stage for future Mes-
sage Passing Interface (MPI) distributed memory parallelism in PyMPDATA. The PyMPDATA, the
PyMPDATA-examples and the numba-mpi packages are available in the PyPI package repository,
and installation of these packages reduces to typing pip install package_name. Develop-
ment of all three packages is hosted on GitHub at: https://github.com/atmos-cloud-sim-uj/
and continuous integration runs on Linux, macOS and Windows using GitHub Actions and
Appveyor platforms (the latter used for 32-bit runs on Windows). Auto-generated documenta-
tion sites built with pdoc3 are hosted at https://atmos-cloud-sim-uj.github.io/PyMPDATA/,
https://atmos-cloud-sim-uj.github.io/PyMPDATA-examples/, and https://atmos-cloud-sim-
uj.github.io/numba-mpi/.

PyMPDATA is a free and open-source software released under the terms of the GNU General
Public License 3.0 (https://www.gnu.org/licenses/gpl-3.0).

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

2

https://doi.org/10.21105/joss.03896

Usage examples
Simulations included in the PyMPDATA-examples package are listed below, labelled with the
paper reference on which the example setup is based. Each example is annotated with the
dimensionality, number of equations constituting the system, and an outline of setup.

• 1D:
– Smolarkiewicz (2006): single-equation advection-only homogeneous problem with

different algorithm options depicted with constant velocity field
– Arabas & Farhat (2020): single-equation advection-diffusion problem resulting

from a transformation of the Black-Scholes equation into either homogeneous or
heterogeneous problem for European or American option valuation, respectively

– Olesik et al. (2022): single-equation advection-only homogeneous problem with
coordinate transformation depicting application of MPDATA for condensational growth
of a population of particles

• 2D:
– Molenkamp (1968): single-equation homogeneous transport with different algorithm

options
– Jarecka et al. (2015): shallow-water system with three equations representing

conservation of mass and two components of momentum (with the momentum
equations featuring source terms) modelling spreading under gravity of a three-
dimensional elliptic drop on a two-dimensional plane

– Williamson & Rasch (1989): advection on a spherical plane depicting transformation
to spherical coordinates

– Shipway & Hill (2012): coupled system of water vapour mass (single spatial
dimension) and water droplet number conservation (spatial and spectral dimensions)
with the latter featuring source term modelling activation of water droplets on
aerosol particles, coordinate transformation used for representation of air density
profile

• 3D:
– Smolarkiewicz (1984): homogeneous single-equation example depicting revolution

of a spherical signal in a constant angular velocity rotational velocity field

In addition, PyMPDATA is used in a two-dimensional setup in of the examples in the sister
PySDM package (Bartman et al., 2022).

Implementation highlights
In 2D and 3D simulations, domain-decomposition is used for multi-threaded parallelism.
Domain decomposition is performed along the outer dimension only and is realised using the
numba.prange() functionality.

PyMPDATA design features a custom-built multi-dimensional Arakawa-C staggered grid layer,
allowing to concisely represent multi-dimensional stencil operations on both scalar and vector
fields. The grid layer is built on top of NumPy’s ndarrays (using “C” ordering) using the Numba’s
@njit functionality for high-performance multi-threaded array traversals. The array-traversal
layer enables to code once for multiple dimensions (i.e. one set of MPDATA formulae for 1D,
2D, and 3D), and automatically handles (if needed) any halo-filling logic related to boundary
conditions.

The Numba’s deviation from Python semantics rendering closure variables as compile-time
constants is extensively exploited within PyMPDATA code base enabling the just-in-time com-
pilation to benefit from information on domain extents, algorithm variant used and problem
characteristics (e.g., coordinate transformation used, or lack thereof).

In general, the numerical and concurrency aspects of PyMPDATA implementation follow the

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

3

https://doi.org/10.21105/joss.03896

libmpdata++ open-source C++ implementation of MPDATA (Jaruga et al., 2015).

Performance
A basic performance analysis is carried out comparing PyMPDATA execution (wall) times: (i) with
or without Numba JIT, as well as (ii) comparing performance against the C++ implementation
of MPDATA in libmpdata++. The tests are carried out using a 3D simulation based on the
revolving sphere case from Smolarkiewicz (1984) (figs. 13-16 therein) as used in Jaruga
et al. (2015) (fig. 13 therein). The simulation setup involves solution of a homogeneous
advection problem in a cubic domain with a non-divergent rotational flow. Here, for simplicity,
all simulations are carried out for 64 timesteps, and the measured wall-time is divided by
the number of steps and reported as wall-time per timestep. In all reported runs, both for
libmpdata++ and PyMPDATA, two corrective iterations of MPDATA are used, and the basic
flavour of the algorithm is employed. Wall-time measurements are carried out using the timers
built-in into libmpdata++, and using Python’s timeit routines, respectively. Timing applies
to integration only excluding initial condition evaluation or output handling. Simulations are
repeated four times and the minimal value is reported in order to filter out JIT-compilation
and caching overhead and to minimise thread-schedulling differences. For PyMPDATA runs
with Numba JIT disabled, the number of repetitions is reduced from four to two. Simulations
are carried out on one, two or three threads on a machine with four physical cores.

(a) (b)

10 1

100

PyMPDATA: Numba JIT disabled
libmpdata++
PyMPDATA: dynamic grid
PyMPDATA: static grid

1 2 3
number of threads

10 3

wa
ll

tim
e

pe
r t

im
es

te
p

[s
]

8 16 32 64 128
N (where grid=N×N×N)

10 4

10 3

10 2

10 1
wa

llt
im

e
pe

r t
im

es
te

p
[s

]
libmpdata++ (3 threads)
PyMPDATA: dynamic grid (3 threads)

Figure 2: Comparison of wall-time measurements results for a 3D simulation using PyMPDATA with JIT
disabled (red line) and enabled (connected points) corroborated against timings of analogous simulation
performed with libmpdata++. Panel (a) presents scaling with the number of threads used, for the case
of 16 by 16 by 16 domain. Panel (b) depicts scaling with domain size for simulations using three threads.

Figure 2 (a) depicts wall-times measured with a domain of 16 by 16 by 16, and for: PyMPDATA

with Numba JIT disabled (red line), libmpdata++ (green connected points), and PyMPDATA

with JIT enabled for both dynamic grid (i.e., grid extents specified at run-time, plotted with
orange connected points) and static grid (i.e., grid extents specified ahead of JIT compilation,
blue connected points). First, an over three orders of magnitude speedup is depicted comparing
wall-times with JIT disabled and enabled. Comparison of PyMPDATA and libmpdata++ reveals
comparable performance and scaling with number of threads with consistently shorter wall-times
for PyMPDATA, and a slight further improvement when switching from dynamic to static grid.

Figure 2 (b) depicts wall-time dependence on the domain size for the case of three threads, and
confirms that the observed higher performance of PyMPDATA as compared with libmpdata++

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

4

https://doi.org/10.21105/joss.03896

can be observed over a range of domain sizes starting from 16 by 16 by 16 up to 128 by
128 by 128. While more comprehensive tests and analyses would be needed to identify the
cause of this superior performance, two possible factors include overhead from employment
of the Blitz++ library in libmpdata++ as well as explicit (potentially superfluous) halo-filling
triggers in libmpdata++ as opposed to on-demand halo-filling design implemented in PyMPDATA.
Noteworthy, as reported in Jaruga et al. (2015) (section 7 therein), for the very test case
discussed herein, and for small grid sizes (59 by 59 by 59), libmpdata++ had up to five
times longer execution times compared with the original FORTRAN-77 serial implementaion
of MPDATA. This indicates that the measured performance of PyMPDATA approaches the
performance of the original FORTRAN-77 implementation, at the same time offering multi-
threading concurrency, hiding the compilation and linking stages from the user, and featuring
interoperability with the Python package ecosystem.

Appendix P: Python sample code
import numpy as np

from PyMPDATA import Options, ScalarField, VectorField, Stepper, Solver

from PyMPDATA.boundary_conditions import Periodic

options = Options(n_iters=2)

nx, ny = 24, 24

Cx, Cy = -.5, -.25

halo = options.n_halo

xi, yi = np.indices((nx, ny), dtype=float)

advectee = ScalarField(

data=np.exp(

-(xi+.5-nx/2)**2 / (2*(nx/10)**2)

-(yi+.5-ny/2)**2 / (2*(ny/10)**2)

),

halo=halo,

boundary_conditions=(Periodic(), Periodic())

)

advector = VectorField(

data=(np.full((nx + 1, ny), Cx), np.full((nx, ny + 1), Cy)),

halo=halo,

boundary_conditions=(Periodic(), Periodic())

)

stepper = Stepper(options=options, grid=(nx, ny))

solver = Solver(stepper=stepper, advectee=advectee, advector=advector)

solver.advance(n_steps=75)

state = solver.advectee.get()

Appendix J: Julia sample code
using PyCall

Options = pyimport(”PyMPDATA”).Options

ScalarField = pyimport(”PyMPDATA”).ScalarField

VectorField = pyimport(”PyMPDATA”).VectorField

Stepper = pyimport(”PyMPDATA”).Stepper

Solver = pyimport(”PyMPDATA”).Solver

Periodic = pyimport(”PyMPDATA.boundary_conditions”).Periodic

options = Options(n_iters=2)

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

5

https://doi.org/10.21105/joss.03896

nx, ny = 24, 24

Cx, Cy = -.5, -.25

idx = CartesianIndices((nx, ny))

halo = options.n_halo

advectee = ScalarField(

data=exp.(

-(getindex.(idx, 1) .- .5 .- nx/2).^2 / (2*(nx/10)^2)

-(getindex.(idx, 2) .- .5 .- ny/2).^2 / (2*(ny/10)^2)

),

halo=halo,

boundary_conditions=(Periodic(), Periodic())

)

advector = VectorField(

data=(fill(Cx, (nx+1, ny)), fill(Cy, (nx, ny+1))),

halo=halo,

boundary_conditions=(Periodic(), Periodic())

)

stepper = Stepper(options=options, grid=(nx, ny))

solver = Solver(stepper=stepper, advectee=advectee, advector=advector)

solver.advance(n_steps=75)

state = solver.advectee.get()

Appendix M: Matlab sample code
Options = py.importlib.import_module('PyMPDATA').Options;

ScalarField = py.importlib.import_module('PyMPDATA').ScalarField;

VectorField = py.importlib.import_module('PyMPDATA').VectorField;

Stepper = py.importlib.import_module('PyMPDATA').Stepper;

Solver = py.importlib.import_module('PyMPDATA').Solver;

Periodic = ...

py.importlib.import_module('PyMPDATA.boundary_conditions').Periodic;

options = Options(pyargs('n_iters', 2));

nx = int32(24);

ny = int32(24);

Cx = -.5;

Cy = -.25;

[xi, yi] = meshgrid(double(0:1:nx-1), double(0:1:ny-1));

halo = options.n_halo;

advectee = ScalarField(pyargs(...

'data', py.numpy.array(exp(...

-(xi+.5-double(nx)/2).^2 / (2*(double(nx)/10)^2) ...

-(yi+.5-double(ny)/2).^2 / (2*(double(ny)/10)^2) ...

)), ...

'halo', halo, ...

'boundary_conditions', py.tuple({Periodic(), Periodic()}) ...

));

advector = VectorField(pyargs(...

'data', py.tuple({ ...

Cx * py.numpy.ones(int32([nx+1 ny])), ...

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

6

https://doi.org/10.21105/joss.03896

Cy * py.numpy.ones(int32([nx ny+1])) ...

}), ...

'halo', halo, ...

'boundary_conditions', py.tuple({Periodic(), Periodic()}) ...

));

stepper = Stepper(pyargs(...

'options', options, ...

'grid', py.tuple({nx, ny}) ...

));

solver = Solver(...

pyargs('stepper', ...

stepper, 'advectee', ...

advectee, 'advector', ...

advector ...

));

solver.advance(pyargs('n_steps', 75));

state = solver.advectee.get();

Author contributions
PB had been the architect of PyMPDATA with SA taking the role of main developer and
maintainer over the time. MO participated in the package core development and led the
development of the condensational-growth example, which was the basis of his MSc thesis.
JB contributed the DPDC algorithm variant handling. SD contributed the advection-diffusion
example. MM contributed to the numba-mpi package. PR contributed the shallow-water
example. MS contributed the advection-on-a-sphere example. The paper was composed by SA
and is based on the contents of the README files of the PyMPDATA, PyMPDATA-examples, and
numba-mpi packages.

Acknowledgements
Development of PyMPDATA has been carried out within the POWROTY/REINTEGRATION
programme of the Foundation for Polish Science, co-financed by the European Union under
the European Regional Development Fund (POIR.04.04.00-00-5E1C/18).

References
Arabas, S., & Farhat, A. (2020). Derivative pricing as a transport problem: MPDATA solutions

to Black–Scholes-type equations. J. Comput. Appl. Math., 373. https://doi.org/10.1016/
j.cam.2019.05.023

Arabas, S., Jarecka, D., Jaruga, A., & Fijałkowski, M. (2014). Formula translation in Blitz++,
NumPy and modern Fortran: A case study of the language choice tradeoffs. Sci. Prog.,
22. https://doi.org/10.3233/SPR-140379

Bartman, P., Bulenok, O., Górski, K., Jaruga, A., G., Ł., Olesik, M., Piasecki, B., Singer,
C. E., Talar, A., & Arabas, S. (2022). PySDM v1: Particle-based cloud modelling
package for warm-rain microphysics and aqueous chemistry. J. Open Source Softw., 7 (72).
https://doi.org/10.21105/joss.03219

Beason, C. W., & Margolin, L. G. (1988). DPDC (double-pass donor cell): A second-order
monotone scheme for advection. Fifth Nuclear Code Developers’ Conference. https:
//www.osti.gov/servlets/purl/7049237

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

7

https://doi.org/10.1016/j.cam.2019.05.023
https://doi.org/10.1016/j.cam.2019.05.023
https://doi.org/10.3233/SPR-140379
https://doi.org/10.21105/joss.03219
https://www.osti.gov/servlets/purl/7049237
https://www.osti.gov/servlets/purl/7049237
https://doi.org/10.21105/joss.03896

Jarecka, D., Jaruga, A., & Smolarkiewicz, P. K. (2015). A spreading drop of shallow water. J.
Comp. Phys., 289. https://doi.org/10.1016/j.jcp.2015.02.003

Jaruga, A., Arabas, S., Jarecka, D., Pawlowska, H., Smolarkiewicz, P. K., & Waruszewski, M.
(2015). libmpdata++ 1.0: A library of parallel MPDATA solvers for systems of generalised
transport equations. Geosci. Model Dev., 8. https://doi.org/10.5194/gmd-8-1005-2015

Kühnlein, C., Deconinck, W., Klein, R., Malardel, S., Piotrowski, Z. P., Smolarkiewicz, P. K.,
Szmelter, J., & Wedi, N. P. (2019). FVM 1.0: A nonhydrostatic finite-volume dynamical
core for the IFS. Geosci. Model Dev., 12. https://doi.org/10.5194/gmd-12-651-2019

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based Python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC.
https://doi.org/10.1145/2833157.2833162

Margolin, L. G., & Shashkov, M. (2006). MPDATA: Gauge transformations, limiters and
monotonicity. Int. J. Numer. Methods Fluids, 50(10). https://doi.org/10.1002/fld.1070

Margolin, L. G., & Smolarkiewicz, P. K. (1998). Antidiffusive velocities for multipass donor cell
advection. SIAM J. Sci. Comput., 20(3). https://doi.org/10.1137/S106482759324700X

Molenkamp, C. R. (1968). Accuracy of finite-difference methods applied to the advection
equation. J. Appl. Meteorol. Climatol., 7. https://doi.org/10.1175/1520-0450(1968)007%
3C0160:AOFDMA%3E2.0.CO;2

Morton, K. W. (1996). Numerical solution of convection-diffusion problems. CRC Press.
https://doi.org/10.1201/9780203711194

Olesik, M., Banaśkiewicz, J., Bartman, P., Baumgartner, M., Unterstrasser, S., & Arabas, S.
(2022). On numerical broadening of particle-size spectra: A condensational growth study us-
ing PyMPDATA 1.0. Geosci. Model Dev., 15. https://doi.org/10.5194/gmd-15-3879-2022

Røed, L. P. (2019). Advection problem. In Atmospheres and oceans on computers. https:
//doi.org/10.1007/978-3-319-93864-6_5

Shipway, B. J., & Hill, A. A. (2012). Diagnosis of systematic differences between multiple
parametrizations of warm rain microphysics using a kinematic framework. Q. J. R. Meteorol.
Soc., 138(669). https://doi.org/10.1002/qj.1913

Smolarkiewicz, P. K. (1983). A simple positive definite advection scheme with small implicit
diffusion. Mon. Weather Rev., 111. https://doi.org/10.1175/1520-0493(1983)111%
3C0479:ASPDAS%3E2.0.CO;2

Smolarkiewicz, P. K. (1984). A fully multidimensional positive definite advection transport
algorithm with small implicit diffusion. J. Comp. Phys., 54. https://doi.org/10.1016/
0021-9991(84)90121-9

Smolarkiewicz, P. K. (2006). Multidimensional positive definite advection transport algorithm:
An overview. Int. J. Numer. Methods Fluids, 50(10). https://doi.org/10.1002/fld.1071

Smolarkiewicz, P. K., & Clark, T. L. (1986). The multidimensional positive definite advection
transport algorithm: Further development and applications. J. Comp. Phys., 67. https:
//doi.org/10.1016/0021-9991(86)90270-6

Smolarkiewicz, P. K., & Grabowski, W. W. (1990). The multidimensional positive definite
advection transport algorithm: Nonoscillatory option. J. Comp. Phys., 86. https://doi.
org/10.1016/0021-9991(90)90105-A

Smolarkiewicz, P. K., & Margolin, L. G. (1993). On forward-in-time differencing for fluids:
Extension to a curvilinear framework. Mon. Weather Rev., 121. https://doi.org/10.1175/
1520-0493(1993)121%3C1847:OFITDF%3E2.0.CO;2

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

8

https://doi.org/10.1016/j.jcp.2015.02.003
https://doi.org/10.5194/gmd-8-1005-2015
https://doi.org/10.5194/gmd-12-651-2019
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1002/fld.1070
https://doi.org/10.1137/S106482759324700X
https://doi.org/10.1175/1520-0450(1968)007%3C0160:AOFDMA%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1968)007%3C0160:AOFDMA%3E2.0.CO;2
https://doi.org/10.1201/9780203711194
https://doi.org/10.5194/gmd-15-3879-2022
https://doi.org/10.1007/978-3-319-93864-6_5
https://doi.org/10.1007/978-3-319-93864-6_5
https://doi.org/10.1002/qj.1913
https://doi.org/10.1175/1520-0493(1983)111%3C0479:ASPDAS%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111%3C0479:ASPDAS%3E2.0.CO;2
https://doi.org/10.1016/0021-9991(84)90121-9
https://doi.org/10.1016/0021-9991(84)90121-9
https://doi.org/10.1002/fld.1071
https://doi.org/10.1016/0021-9991(86)90270-6
https://doi.org/10.1016/0021-9991(86)90270-6
https://doi.org/10.1016/0021-9991(90)90105-A
https://doi.org/10.1016/0021-9991(90)90105-A
https://doi.org/10.1175/1520-0493(1993)121%3C1847:OFITDF%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121%3C1847:OFITDF%3E2.0.CO;2
https://doi.org/10.21105/joss.03896

Smolarkiewicz, P. K., & Margolin, L. G. (1998). MPDATA: A finite-difference solverfor
geophysical flows. J. Comp. Phys., 140. https://doi.org/10.1006/jcph.1998.5901

Smolarkiewicz, P. K., & Szmelter, J. (2005). MPDATA: An edge-based unstructured-grid
formulation. J. Comp. Phys., 206(2). https://doi.org/10.1016/j.jcp.2004.12.021

Williamson, D. L., & Rasch, P. J. (1989). Two-dimensional semi-Lagrangian transport with
shape-preserving interpolation. Mon. Weather Rev., 117. https://doi.org/10.1175/
1520-0493(1989)117%3C0102:TDSLTW%3E2.0.CO;2

Bartman et al. (2022). PyMPDATA v1: Numba-accelerated implementation of MPDATA with examples in Python, Julia and Matlab. Journal of
Open Source Software, 7(77), 3896. https://doi.org/10.21105/joss.03896.

9

https://doi.org/10.1006/jcph.1998.5901
https://doi.org/10.1016/j.jcp.2004.12.021
https://doi.org/10.1175/1520-0493(1989)117%3C0102:TDSLTW%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117%3C0102:TDSLTW%3E2.0.CO;2
https://doi.org/10.21105/joss.03896

	Statement of need
	Summary
	Usage examples
	Implementation highlights
	Performance
	Appendix P: Python sample code
	Appendix J: Julia sample code
	Appendix M: Matlab sample code
	Author contributions
	Acknowledgements
	References

