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Summary

Understanding how disease spreads through populations is important when designing and im-
plementing control measures. MetaWards implements a stochastic metapopulation model
of disease transmission that enables geographical modelling of disease spread that can scale
all the way from modelling local transmission up to full national- or international-scale out-
breaks. It is built in Python and has a flexible plugin architecture to support complex scenario
modelling. This enables the code to be adapted to model new situations and new control
measures as they arise, e.g. emergence of new variants of disease, enaction of different types
of movement restrictions, availability of different types of vaccines etc. It implements a user-
definable compartmental transmission model, such as an SIR model, that can be extended
multi-dimensionally via multiple demographics or sub-populations, and multiple geographical
regions. Models can be constructed from the various sources of movement and demographic
data that are available, and are accelerated via Cython (Behnel et al., 2020), OpenMP, Scoop
(Hold & Gagnon, 2019) and MPI4Py (Dalcin & Fang, 2021) to scale efficiently from running
on personal laptops to large supercomputers. Python, R and command line interfaces and a
complete set of tutorials empower researchers to adapt their models to a variety of scenarios.

Statement of need

MetaWards was originally developed as a C program to support modelling of disease transmis-
sion in Great Britain (Danon et al., 2009; Keeling et al., 2010). The original C code has been
published on GitHub separately (Danon et al., 2020) and is included in the main MetaWards
repository for reference. In a metapopulation model, individuals are divided into different
geographical regions, e.g. into electoral wards as in the original code. Disease transmission
between regions occurs via the daily movement of individuals.
This model was recently adapted to model COVID-19 transmission in England and Wales
(Danon et al., 2021). Upon adaption it became clear that the original C code needed to be
made more robust, more trustable, faster, and easier to extend to model new scenarios. This
Python version was created to meet all of those needs. This Python version of MetaWards
can identically reproduce the outputs from the original C code. It has been optimised and
parallelised, with extensive unit testing added to build trust and robustness. Use of Cython
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(Behnel et al., 2020) enabled the ported code to run as quickly as the original C code, and
then parallelisation via OpenMP provided a significant speed-up on multi-core machines. Re-
architecting of the code, including creating a new multi-network (demographic) framework,
enabled extension of the traditional compartmental transmission model across multiple dimen-
sions; horizontally by adding disease stages, vertically by adding multiple networks to represent
different demographics or sub-populations, and geographically via movement of modelled in-
dividuals to different custom locations, wards or regions. Finally, a flexible plugin architecture
together with a tutorial-driven development style has created a flexible modelling framework
with a rich set of tutorials and documentation. These demonstrate how MetaWards can be
adapted easily via a Python, R or command-line interface to model a variety of complex sce-
narios. MetaWards is being used for on-going modelling of COVID-19 transmission, e.g. via
the model (McKinley, 2021) developed by the UQ4Covid project (Williamson et al., 2020).

Tutorial-Driven Development

A tutorial-driven development process was used for MetaWards. This process was inspired by
test-driven development, where the tests are written first. For tutorial-driven development,
we aimed to write the tutorials first.
Development started with a discussion of the new scenarios that needed modelling. This
was followed with tutorials that described how MetaWards would be used to model those
scenarios. Finally, the code (and unit tests) were written so that MetaWards behaved as
described in the tutorials. The project team took the view that if functionality was not
described in a tutorial, then it didn’t exist, as users would not know how to make use of it.
The tutorials (Woods, 2021) evolved in lock-step with the code. Development was rapid,
with new versions released regularly during 2020. To manage this change, MetaWards rigidly
used the semantic versioning (SemVer) scheme (Preston-Werner, 2021) and provided strong
guarantees of backwards compatibility. The website was versioned, so that tutorials for older
versions of the software were easily accessible via a drop-down selector. Today, this versioning
can be used to retroactively view how the tutorials developed alongside the code.

Features

MetaWards is designed to enable researchers to model how an infection may spread geograph-
ically (Figure 1), and what impact different control measures or individual behaviours may
make.
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Figure 1: Analysis of a simulation run (Siegert, 2020) that used MetaWards to chart disease spread
across England and Wales.

To this end, MetaWards features;

• a generic compartmental tranmission model, with user-definable compartments and
transmission algorithms. Supports both traditional (e.g. SIR, SEIR, SI, SIS) and custom
models,

• a flexible plugin architecture that makes it easy to implement new control measures. For
example, the tutorial shows how this can be used to model shielding, different lockdown
scenarios and to investigate necessary durations of quarantine or self-isolation,

• multi-network demographic support. Multiple networks can be run as a single combined
group, with custom plugins used to merge data between networks, and conditionally
move individuals between different demographics. Tutorials demonstrate how this can
be used to model, for example, shielding and self-isolation, hospital admissions, impact
of individuals returning from holidays,

• per-ward custom parameter support. Different wards can have different parameters,
meaning that local behaviour can be easily modelled (e.g. local lockdowns, changes in
local control measures),

• complete-detail and full control over horizontal and vertical movements through disease
stages or across demographics. Tutorials show how this can be used this to model
vaccination and also to model waning immunity, with individuals returned from the R
or V stages back to S,
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• flexible data output support - again handled using an array of in-built or user-supplied
data extraction plugin functions. Data can be output in whatever format is needed for
analysis, either to text files or to databases,

• full reproducibility support baked in throughout. The code records enough data to make
reproduction easy, with results designed to be the same given the same inputs, random
number seed and number of threads,

• flexible input files that would enable modelling of any region or country to be undertaken,
based on the various sources of movement and demographic data that are available.
Models of England and Wales, and the UK have been created, and a Python and R
API are provided to make it easy to create custom networks. These support everything
from individual wards or local geographies, up to full national- or international-scale
metapopulation models,

• support for scanning design files for optimisation or sensitivity analysis of nearly all input
parameters, plus any user custom parameters used in the main code or any plugins.
These scans can use as much compute as available, parallelising individual runs over
multiple cores, and scaling multiple runs up to full supercomputers (Figure 2).

Figure 2: Multiple scans performed in parallel, with live summary updates as jobs finish.

MetaWards is optimised and can run happily on small laptops. Individual national-scale
networks fit in approximately 80 MB of memory, and model runs can take 15-90 seconds to
perform. Compute and memory costs scale with the number of demographics that are added,
but high performance and low memory consumption are design goals. Models using only a few
wards are kilobytes, and take less than a second to run. Finally, a built-in metawards-plot
tool is included in the package for simple visualisation of key results (Figure 3).
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Figure 3: metawards-plot visualisation of results, including across multiple networks.
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