
CR-Sparse: Hardware accelerated functional algorithms
for sparse signal processing in Python using JAX
Shailesh Kumar1

1 Indian Institute of Technology, Delhi
DOI: 10.21105/joss.03917

Software
• Review
• Repository
• Archive

Editor: Pierre de Buyl
Reviewers:

• @Saran-nns
• @mirca

Submitted: 12 November 2021
Published: 02 December 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

We introduce CR-Sparse, a Python library that enables to efficiently solve a wide variety
of sparse representation based signal processing problems. It is a cohesive collection of sub-
libraries working together. Individual sub-libraries provide functionalities for: wavelets, linear
operators, greedy and convex optimization based sparse recovery algorithms, subspace clus-
tering, standard signal processing transforms, and linear algebra subroutines for solving sparse
linear systems. It has been built using Google JAX (Bradbury et al., 2018), which enables the
same high level Python code to get efficiently compiled on CPU, GPU and TPU architectures
using XLA (Abadi et al., 2017).

Figure 1: Sparse signal representations and compressive sensing

Traditional signal processing exploits the underlying structure in signals by representing them
using Fourier or wavelet orthonormal bases. In these representations, most of the signal
energy is concentrated in few coefficients allowing greater flexibility in analysis and processing
of signals. More flexibility can be achieved by using overcomplete dictionaries (Mallat, 2009)
(e.g. unions of orthonormal bases). However, the construction of sparse representations of
signals in these overcomplete dictionaries is no longer straightforward and requires use of
specialized sparse coding algorithms like orthogonal matching pursuit (Pati et al., 1993) or

Kumar, S., (2021). CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX. Journal of Open
Source Software, 6(68), 3917. https://doi.org/10.21105/joss.03917

1

https://doi.org/10.21105/joss.03917
https://github.com/openjournals/joss-reviews/issues/3917
https://github.com/carnotresearch/cr-sparse
https://doi.org/10.5281/zenodo.5749792
http://pdebuyl.be/
https://github.com/Saran-nns
https://github.com/mirca
http://creativecommons.org/licenses/by/4.0/
https://github.com/carnotresearch/cr-sparse
https://doi.org/10.21105/joss.03917

basis pursuit (Chen et al., 2001). The key idea behind these algorithms is the fact that under-
determined systems Ax = b can be solved efficiently to provide sparse solutions x if the matrix
A satisfies specific conditions on its properties like coherence. Compressive sensing takes the
same idea in the other direction and contends that signals having sparse representations in
suitable bases can be acquired by very few data-independent random measurements y = Φx
if the sensing or measurement system Φ satisfies certain conditions like restricted isometry
property (Candes, 2008). The same sparse coding algorithms can be tailored for sparse signal
recovery from compressed measurements.
A short mathematical introduction to compressive sensing and sparse representation problems
is provided in docs. For comprehensive introduction to sparse representations and compressive
sensing, please refer to excellent books (Elad, 2010; Foucart & Rauhut, 2013; Mallat, 2009),
papers (Donoho, 2006; Marques et al., 2018; Qaisar et al., 2013), Rice Compressive Sensing
Resources and references therein.

Package Overview

The cr.sparse.pursuit package includes greedy and thresholding based solvers for sparse
recovery. It includes: OMP, CoSaMP, HTP, IHT, SP algorithms. (provided in cr.sparse.lop
package). The cr.sparse.cvx package includes efficient solvers for l1-minimization problems
using convex optimization methods. The cr.sparse.sls package provides JAX versions of
LSQR, ISTA, FISTA algorithms for solving sparse linear systems. These algorithms can work
with unstructured random and dense sensing matrices as well as structured sensing matrices
represented as linear operators The cr.sparse.lop package includes a collection of linear
operators influenced by PyLops (Ravasi & Vasconcelos, 2019). cr.sparse.wt package
includes a JAX version of major functionality from PyWavelets (Lee et al., 2019) making it
a first major pure Python wavelets implementation which can work across CPUs, GPUs and
TPUs.

Statement of need

Currently, there is no single Package which provides a comprehensive set of tools for solv-
ing sparse recovery problems in one place. Individual researchers provide their codes along
with their research paper only for the algorithms they have developed. Most of this work
is available in the form of MATLAB (MATLAB, 2018) libraries. E.g.: YALL1 is the original
MATLAB implementation of the ADMM based sparse recovery algorithms. L1-LS is the origi-
nal MATLAB implementation of the Truncated Newton Interior Points Method for solving the
l1-minimization problem. Sparsify provides the MATLAB implementations of IHT, NIHT,
AIHT algorithms. aaren/wavelets is a CWT implementation following (Torrence & Compo,
1998). HTP provides implementation of Hard Thresholding Pursuit in MATLAB. WaveLab is
the reference open source wavelet implementation in MATLAB. However, its API has largely
been superseded by later libraries. Sparse and Redundant Representations book code
(Elad, 2010) provides basic implementations of a number of sparse recovery and related algo-
rithms. Several of these libraries contain key performance critical sub-routines in the form of
C/C++ extensions making portability to GPUs harder.
There are some Python libraries which focus on specific areas however they are generally
CPU based. E.g., pyCSalgos is a Python implementation of various Compressed Sensing
algorithms. spgl1 is a NumPy based implementation of spectral projected gradient for L1
minimization. c-lasso (Simpson et al., 2021) is a Python package for constrained sparse
regression and classification. This is also CPU only. PyWavelets is an excellent CPU only
wavelets implementation in Python closely following the API of Wavelet toolbox in MATLAB.
The performance critical parts have been written entirely in C. There are several attempts

Kumar, S., (2021). CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX. Journal of Open
Source Software, 6(68), 3917. https://doi.org/10.21105/joss.03917

2

https://cr-sparse.readthedocs.io/en/latest/intro.html
https://dsp.rice.edu/cs/
https://dsp.rice.edu/cs/
http://yall1.blogs.rice.edu
https://web.stanford.edu/~boyd/l1_ls/
https://www.southampton.ac.uk/engineering/about/staff/tb1m08.page#software
https://github.com/aaren/wavelets
https://github.com/foucart/HTP
https://github.com/gregfreeman/wavelab850
https://elad.cs.technion.ac.il/wp-content/uploads/2018/02/Matlab-Package-Book-1.zip
https://github.com/nikcleju/pyCSalgos
https://github.com/drrelyea/spgl1
https://github.com/PyWavelets/pywt
https://doi.org/10.21105/joss.03917

to port it on GPU using PyTorch (PyTorch-Wavelet-Toolbox) or Tensorflow (tf-wavelets)
backends. PyLops includes GPU support. They have built a backend.py layer to switch
explicitly between NumPy and CuPy for GPU support. In contrast, our use of JAX enables
us to perform jit compilation with abstracted out end-to-end XLA optimization to multiple
backend.
The algorithms in this package have a wide variety of applications. We list a few: image de-
noising, deblurring, compression, inpainting, impulse noise removal, super-resolution, subspace
clustering, dictionary learning, compressive imaging, medical imaging, compressive radar, wire-
less sensor networks, astrophysical signals, cognitive radio, sparse channel estimation, analog
to information conversion, speech recognition, seismology, direction of arrival.

Sparse signal processing problems and available solvers

We provide JAX based implementations for the following algorithms:

• cr.sparse.pursuit.omp: Orthogonal Matching Pursuit (OMP) (Davenport & Wakin,
2010; Pati et al., 1993; Tropp, 2004)

• cr.sparse.pursuit.cosamp: Compressive Sampling Matching Pursuit (CoSaMP)
(Needell & Tropp, 2009)

• cr.sparse.pursuit.sp: Subspace Pursuit (SP) (Dai & Milenkovic, 2009)
• cr.sparse.pursuit.iht: Iterative Hard Thresholding and its normalized version

(IHT, NIHT) (Blumensath & Davies, 2009; Blumensath & Davies, 2010)
• cr.sparse.pursuit.htp: Hard Thresholding Pursuit and its normalized version (HTP,

NHTP) (Foucart, 2011)
• cr.sparse.cvx.l1ls: Truncated Newton Interior Points Method for solving the l1-

minimization problem (Kim et al., 2007)
• cr.sparse.cvx.admm: Solvers for basis pursuit (BP), basis pursuit denoising (BPDN),

basis pursuit with inequality constraints (BPIC), and their nonnegative variants based
on ADMM (Yang & Zhang, 2011; Zhang et al., 2010)

• cr.sparse.sls.lsqr: LSQR algorithm for sparse linear equations (Paige & Saunders,
1982)

• cr.sparse.sls.ista: Iterative Shrinkage and Thresholding Algorithm (ISTA)
(Daubechies et al., 2004)

• cr.sparse.sls.fista: Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
(Beck & Teboulle, 2009)

The dictionaries and sensing matrices can be efficiently implemented using a pair of functions
for the forward Ax and adjoint AHx operations. cr.sparse.lop provides a collection of
linear operators (similar to PyLops (Ravasi & Vasconcelos, 2019)) which provide the forward
and adjoint operation functions. These operators can be JIT compiled and used efficiently
with the algorithms above. Our 2D and ND operators accept 2D/ND arrays as input and
return 2D/ND arrays as output. The operators +, -, @, ** etc. are overridden to provide
operator calculus, i.e. ways to combine operators to generate new operators.
As an application area, the library includes an implementation of sparse subspace clustering
(SSC) by orthogonal matching pursuit (You et al., 2016) in the cr.sparse.cluster.ssc
package. The cr.sparse.cluster.spectral package provides a custom implementation
of spectral clustering step of SSC.

Kumar, S., (2021). CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX. Journal of Open
Source Software, 6(68), 3917. https://doi.org/10.21105/joss.03917

3

https://github.com/v0lta/PyTorch-Wavelet-Toolbox
https://github.com/UiO-CS/tf-wavelets
https://github.com/PyLops/pylops
https://github.com/PyLops/pylops/blob/master/pylops/utils/backend.py
https://cupy.dev/
https://doi.org/10.21105/joss.03917

Experimental Results

We conducted a number of experiments to benchmark the runtime of CR-Sparse implemen-
tations viz. existing reference software in Python or MATLAB. Jupyter notebooks to reproduce
these micro-benchmarks are available on the cr-sparse-companion (Kumar, 2021) reposi-
tory.
All Python based benchmarks have been run on the machine configuration: Intel(R) Xeon(R)
Gold 6130 CPU @ 2.10GHz, 16 Cores, 64 GB RAM, NVIDIA GeForce GTX 1060 6GB GPU,
Ubuntu 18.04 64-Bit, Python 3.8.8, NVidia driver version 495.29.05, CUDA version 11.5.
MATLAB based benchmarks were run on the machine configuration: Intel(R) Core(TM) i7-
10510U CPU @ 1.80GHz 2.30 GHz, 32 GB RAM, Windows 10 Pro, MATLAB R2020b.
The following table provides comparison of CR-Sparse against reference implementations on
a set of representative problems:

Problem Size Ref tool Ref time Our time Gain
Hard Thresholding

Pursuit
M=2560, N=10240,

K=200
HTP (MATLAB) 3.5687 s 160 ms 22x

Orthogonal Matching
Pursuit

M=2000, N=10000,
K=100

sckit-learn 379 ms 120 ms 3.15x

ADMM, BP M=2000, N=20000,
K=200

YALL1
(MATLAB)

1.542 sec 445 ms 3.46x

ADMM, BPDN M=2000, N=20000,
K=200

YALL1
(MATLAB)

1.572.81
sec

273 ms 5.75x

Image blurring Image: 500x480,
Kernel: 15x25

Pylops 6.63 ms 1.64 ms 4x

Image deblurring using
LSQR

Image: 500x480,
Kernel: 15x25

Pylops 237 ms 39.3 ms 6x

Image DWT2 Image: 512x512 PyWavelets 4.48 ms 656 µs 6.83x
Image IDWT2 Image: 512x512 PyWavelets 3.4 ms 614 µs 5.54x
OMP for SSC 5 subspaces 50K

points
SSCOMP_Code

(MATLAB)
52.5 s 10.2 s 4.6x

We see significant though variable gains achieved by CR-Sparse on GPU. We have observed
that gain tends to increase for larger problem sizes. GPUs tend to perform better when
problem size increases as the matrix/vector products become bigger. vmap and pmap tools
provided by JAX can be used to easily parallelize the CR-Sparse algorithms over multiple
data and processors.
Following table compares the runtime of linear operators in CR-Sparse on GPU vs PyLops on
CPU for large size problems. Timings are measured for both forward and adjoint operati‘ons.

Operator Size Fwd ref Fwd our Gain Adj ref Adj our Gain
Diagonal matrix mult n=1M 966 µs 95.7 µs 10x 992 µs 96.3 µs 10x

Matrix mult (m,n)=(10K,10K) 11 ms 2.51 ms 4.37x 11.6 ms 2.51 ms 4.63x
First derivative n=1M 2.15 ms 71.1 µs 30.2x 2.97 ms 186 µs 15.97x

HAAR DWT2, level=8 in=(4K,4K) 981 ms 34.4 ms 28.5x 713 ms 60.8 ms 11.7x

Limitations

Some of the limitations in the library come from the underlying JAX library. JAX is relatively
new and still hasn’t reached 1.0 level maturity. The programming model chosen by JAX
places several restrictions on expressing the program logic. For example, JAX does not have
support for dynamic or data dependent shapes in their JIT compiler. Thus, any algorithm

Kumar, S., (2021). CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX. Journal of Open
Source Software, 6(68), 3917. https://doi.org/10.21105/joss.03917

4

https://github.com/carnotresearch/cr-sparse-companion
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html#to-jit-or-not-to-jit
https://doi.org/10.21105/joss.03917

parameter which determines the size/shape of individual arrays in an algorithm must be stat-
ically provided. E.g. for the greedy algorithms like OMP, the sparsity level K must be known
in advance and provided as a static parameter to the API as the size of output array depends
on K.
The control flow primitives like lax.while_loop, lax.fori_loop etc. in JAX require
that the algorithm state flowing between iterations must not change shape and size. This
makes coding of algorithms like OMP or SVT (singular value thresholding) very difficult. An
incremental QR or Cholesky decomposition based implementation of OMP requires growing
algorithm state. We ended up using a standard Python for loop for now but the JIT compiler
simply unrolls it and doesn’t allow for tolerance based early termination in them.
1D convolutions are slow in JAX on CPU #7961. This affects the performance of DWT/IDWT
in cr.sparse.dwt. We are working on exploring ways of making it more efficient while keeping
the API intact.
These restrictions necessitate good amount of creativity and a very disciplined coding style so
that efficient JIT friendly solvers can be developed.

Future Work

Currently, work is underway to provide a JAX based implementation of TFOCS (Becker et al.,
2011) in the dev branch. This will help us increase the coverage to a wider set of problems (like
total variation minimization, Dantzig selector, l1-analysis, nuclear norm minimization, etc.).
As part of this effort, we are expanding our collection of linear operators and building a set of
indicator and projector functions on to convex sets and proximal operators (Parikh & Boyd,
2014). This will enable us to cover other applications such as SSC-L1 (Pourkamali-Anaraki
et al., 2020). In future, we intend to increase the coverage in following areas: More recovery
algorithms (OLS, Split Bergmann, SPGL1, etc.) and specialized cases (partial known sup-
port,); Bayesian Compressive Sensing; Dictionary learning (K-SVD, MOD, etc.); Subspace
clustering; Image denoising, compression, etc. problems using sparse representation princi-
ples; Matrix completion problems; Matrix factorization problems; Model based / Structured
compressive sensing problems; Joint recovery problems from multiple measurement vectors.

Acknowledgements

Shailesh would like to thank his Ph.D. supervisors Prof. Surendra Prasad and Prof. Brejesh
Lall to inculcate his interest in this area and support him over the years in his exploration. He
would also like to thank his employers, Interra Systems Inc., for allowing him to pursue his
research interests along with his day job.

References

Abadi, M., Isard, M., & Murray, D. G. (2017). A computational model for TensorFlow: An
introduction. Proceedings of the 1st ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, 1–7. https://doi.org/10.1145/3088525.3088527

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202. https://doi.org/10.
1137/080716542

Kumar, S., (2021). CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX. Journal of Open
Source Software, 6(68), 3917. https://doi.org/10.21105/joss.03917

5

https://github.com/google/jax/discussions/7961
http://cvxr.com/tfocs/
https://doi.org/10.1145/3088525.3088527
https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.21105/joss.03917

Becker, S. R., Candès, E. J., & Grant, M. C. (2011). Templates for convex cone problems
with applications to sparse signal recovery. Mathematical Programming Computation,
3(3), 165. https://doi.org/10.1007/s12532-011-0029-5

Blumensath, T., & Davies, M. E. (2009). Iterative hard thresholding for compressed sensing.
Applied and Computational Harmonic Analysis, 27(3), 265–274. https://doi.org/10.1016/
j.acha.2009.04.002

Blumensath, T., & Davies, M. E. (2010). Normalized iterative hard thresholding: Guaranteed
stability and performance. Selected Topics in Signal Processing, IEEE Journal of, 4(2),
298–309. https://doi.org/10.1109/jstsp.2010.2042411

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.2.5) [Computer software]. http:
//github.com/google/jax

Candes, E. J. (2008). The restricted isometry property and its implications for compressed
sensing. Comptes Rendus Mathematique, 346(9-10), 589–592. https://doi.org/10.1016/
j.crma.2008.03.014

Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis
pursuit. SIAM Review, 43(1), 129–159. https://doi.org/10.1137/S003614450037906X

Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal re-
construction. Information Theory, IEEE Transactions on, 55(5), 2230–2249. https:
//doi.org/10.1109/tit.2009.2016006

Daubechies, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11),
1413–1457. https://doi.org/10.1002/cpa.20042

Davenport, M. A., & Wakin, M. B. (2010). Analysis of orthogonal matching pursuit using
the restricted isometry property. Information Theory, IEEE Transactions on, 56(9), 4395–
4401. https://doi.org/10.1109/tit.2010.2054653

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4),
1289–1306. https://doi.org/10.1109/tit.2006.871582

Elad, M. (2010). Sparse and redundant representations. Springer. https://doi.org/10.1007/
978-1-4419-7011-4

Foucart, S. (2011). Recovering jointly sparse vectors via hard thresholding pursuit. Proc.
Sampling Theory and Applications (SampTA)],(May 2-6 2011).

Foucart, S., & Rauhut, H. (2013). A mathematical introduction to compressive sensing.
Springer New York. https://doi.org/10.1007/978-0-8176-4948-7

Kim, S.-J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior-point method
for large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal
Processing, 1(4), 606–617. https://doi.org/10.1109/JSTSP.2007.910971

Kumar, S. (2021). CR-sparse companion (0.2.1-docs) [Computer software]. https://doi.org/
10.5281/zenodo.5749656

Lee, G., Gommers, R., Waselewski, F., Wohlfahrt, K., & O’Leary, A. (2019). PyWavelets:
A python package for wavelet analysis. Journal of Open Source Software, 4(36), 1237.
https://doi.org/10.21105/joss.01237

Mallat, S. (2009). A wavelet tour of signal processing: The sparse way. Elsevier. https:
//doi.org/10.1016/b978-0-12-374370-1.x0001-8

Kumar, S., (2021). CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX. Journal of Open
Source Software, 6(68), 3917. https://doi.org/10.21105/joss.03917

6

https://doi.org/10.1007/s12532-011-0029-5
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1109/jstsp.2010.2042411
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1109/tit.2009.2016006
https://doi.org/10.1109/tit.2009.2016006
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1109/tit.2010.2054653
https://doi.org/10.1109/tit.2006.871582
https://doi.org/10.1007/978-1-4419-7011-4
https://doi.org/10.1007/978-1-4419-7011-4
https://doi.org/10.1007/978-0-8176-4948-7
https://doi.org/10.1109/JSTSP.2007.910971
https://doi.org/10.5281/zenodo.5749656
https://doi.org/10.5281/zenodo.5749656
https://doi.org/10.21105/joss.01237
https://doi.org/10.1016/b978-0-12-374370-1.x0001-8
https://doi.org/10.1016/b978-0-12-374370-1.x0001-8
https://doi.org/10.21105/joss.03917

Marques, E. C., Maciel, N., Naviner, L., Cai, H., & Yang, J. (2018). A review of sparse
recovery algorithms. IEEE Access, 7, 1300–1322. https://doi.org/10.1109/ACCESS.2018.
2886471

MATLAB. (2018). 9.7.0.1190202 (R2019b). The MathWorks Inc.
Needell, D., & Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete

and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.
https://doi.org/10.1016/j.acha.2008.07.002

Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1), 43–71.
https://doi.org/10.1145/355984.355989

Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends in Optimization,
1(3), 127–239. https://doi.org/10.1561/2400000003

Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition. Signals, Systems and
Computers, 1993. 1993 Conference Record of the Twenty-Seventh Asilomar Conference
on, 40–44. https://doi.org/10.1109/acssc.1993.342465

Pourkamali-Anaraki, F., Folberth, J., & Becker, S. (2020). Efficient solvers for sparse subspace
clustering. Signal Processing, 172, 107548. https://doi.org/10.1016/j.sigpro.2020.107548

Qaisar, S., Bilal, R. M., Iqbal, W., Naureen, M., & Lee, S. (2013). Compressive sensing:
From theory to applications, a survey. Journal of Communications and Networks, 15(5),
443–456. https://doi.org/10.1109/JCN.2013.000083

Ravasi, M., & Vasconcelos, I. (2019). PyLops–a linear-operator python library for large scale
optimization. arXiv Preprint arXiv:1907.12349. https://arxiv.org/abs/1907.12349

Simpson, L., Combettes, P. L., & Müller, C. L. (2021). C-lasso - a python package for con-
strained sparse and robust regression and classification. Journal of Open Source Software,
6(57), 2844. https://doi.org/10.21105/joss.02844

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin
of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/
1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2

Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. Information
Theory, IEEE Transactions on, 50(10), 2231–2242. https://doi.org/10.1109/TIT.2004.
834793

Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for l1-problems in compressive
sensing. SIAM Journal on Scientific Computing, 33(1), 250–278. https://doi.org/10.
1137/090777761

You, C., Robinson, D., & Vidal, R. (2016). Scalable sparse subspace clustering by orthogonal
matching pursuit. IEEE Conference on Computer Vision and Pattern Recognition, 1.
https://doi.org/10.1109/CVPR.2016.425

Zhang, Y., Yang, J., & Yin, W. (2010). User’s guide for YALL1: Your algorithms for L1 opti-
mization. https://www.caam.rice.edu/~optimization/L1/YALL1/User_Guide/YALL1v1.
0_User_Guide.pdf

Kumar, S., (2021). CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX. Journal of Open
Source Software, 6(68), 3917. https://doi.org/10.21105/joss.03917

7

https://doi.org/10.1109/ACCESS.2018.2886471
https://doi.org/10.1109/ACCESS.2018.2886471
https://doi.org/10.1016/j.acha.2008.07.002
https://doi.org/10.1145/355984.355989
https://doi.org/10.1561/2400000003
https://doi.org/10.1109/acssc.1993.342465
https://doi.org/10.1016/j.sigpro.2020.107548
https://doi.org/10.1109/JCN.2013.000083
https://arxiv.org/abs/1907.12349
https://doi.org/10.21105/joss.02844
https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1137/090777761
https://doi.org/10.1137/090777761
https://doi.org/10.1109/CVPR.2016.425
https://www.caam.rice.edu/~optimization/L1/YALL1/User_Guide/YALL1v1.0_User_Guide.pdf
https://www.caam.rice.edu/~optimization/L1/YALL1/User_Guide/YALL1v1.0_User_Guide.pdf
https://doi.org/10.21105/joss.03917

	Summary
	Package Overview
	Statement of need
	Sparse signal processing problems and available solvers
	Experimental Results
	Limitations
	Future Work
	Acknowledgements
	References

