The Journal of Open Source Software

DOI: 10.21105/joss.03919

Software
= Review 7
= Repository &7
= Archive &

Editor: George K. Thiruvathukal
[
Reviewers:

= @gradvohl

= Qlinuxscout

Submitted: 04 November 2021
Published: 18 January 2022

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Unishox: A hybrid encoder for Short Unicode Strings

Arundale Ramanathan!

1 Independent Researcher

Summary

Unishox is a hybrid encoding technique with which short unicode strings could be compressed
using context aware pre-mapped codes and delta coding resulting in surprisingly good ratios.

This article discusses a hybrid encoding method for compressing Short Unicode Strings of
arbitrary lengths including Latin/English text and printable special characters. This has not
been sufficiently addressed by lossless short text encoding methods so far as they have one or
more of the following drawbacks:

= They apply only to either English text or Unicode strings and not both
= They have specific criteria based on which best compression can be achieved
= They are not suitable for low RAM devices

To the extent we know, the existing methods available for short string compression are Smaz
(Sanfilippo, 2012), Shoco (Schramm, 2015), SCSU, (A Standard Compression Scheme for
Unicode - UTR #6, 2005), BOCU (Scherer & Davis, 2002), SSE (Juncai Xu et. al, 2017)
and AIMCS (Abedi & Pourkiani, 2020).

Statement of need

Space occupied by short strings become significant in memory constrained environments such
as Arduino Uno and ESP8266. Text exchange in Chat applications and social media posts is
another area where cost savings could be seen using such compression. It is also possible to
achieve savings in bandwidth and storage cost by storing and retrieving independent strings
in Cloud databases.

Existing Techniques

In information theory, entropy encoding is a lossless data compression scheme that is
independent of the specific characteristics of the medium (MacKay, 2003).

One of the main types of entropy coding is about creating and assigning a unique prefix
-free code to each unique symbol that occurs in the input. These entropy encoders then
compress data by replacing each fixed-length input symbol with the corresponding variable-
length prefix-free output code word.

According to Shannon’s source coding theorem, the optimal code length for a symbol is
—logy P, where b is the number of symbols used to make output codes and P is the probability
of the input symbol (Shannon, 1948). Therefore, the most common symbols use the shortest
codes.

Ramanathan, A., (2022).
//doi.org/10.21105/joss.03919

Unishox: A hybrid encoder for Short Unicode Strings.

Journal of Open Source Software, 7(69), 3919. https: 1

https://doi.org/10.21105/joss.03919
https://github.com/openjournals/joss-reviews/issues/3919
https://github.com/siara-cc/Unishox2
https://doi.org/10.5281/zenodo.5800408
https://gkt.cs.luc.edu
https://github.com/gradvohl
https://github.com/linuxscout
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

The most popular method for forming optimal prefix-free discrete codes is Huffman coding
(Huffman, 1952).

A Dictionary coder, also sometimes known as a substitution coder, is a class of lossless
data compression algorithms which operate by searching for matches between the text to
be compressed and a set of strings contained in a data structure (called the dictionary
maintained by the encoder. When the encoder finds such a match, it substitutes a reference
to the string's position in the data structure.

The LZ77 family of encoders use the dictionary encoding technique for compressing data (Ziv
& Lempel, 1977).

Delta coding is a technique applied where encoding the difference between the previously
encoded symbol or set of symbols is smaller compared to encoding the symbol or the set
again. The differnce is determined by using the set minus operator or subtraction of values
(Delta Encoding, 2019).

In contrast to these encoding methods, there are various other approaches to lossless coding
including Run Length Encoding (RLE) and Burrows-Wheeler coding (Burrows & Wheeler,
1994).

While programs such as GZip, Deflate, Zip, LZMA and BZ2 that use such technologies are
available for general purpose compression, they do not provide optimal compression for short
strings. Even though these methods compress far more than what is proposed in this article,
they often expand the original source for short strings because the symbol-code mapping also
needs to be attached to aid decompression.

Short string compression techniques

Techniques available For compressing short English / Latin text are Smaz and shoco, but are
not developed with Unicode in mind.

Smaz is a simple compression library suitable for compressing very short strings (Sanfilippo,
2012). It was developed by Salvatore Sanfilippo and is released under the BSD license.

Shoco is a C library to compress short strings (Schramm, 2015). It was developed by Christian
Schramm and is released under the MIT license.

While both are lossless encoding methods, Smaz is dictionary based and Shoco classifies as
an entropy coder (Schramm, 2015).

In addition to providing a default frequency table as model, shoco provides an option to
re-define the frequency table based on training text (Schramm, 2015).

For compressing Unicode sequences, three technologies are available: SCSU (A Standard
Compression Scheme for Unicode - UTR #6, 2005), BOCU (Scherer & Davis, 2002), and
FAST (Pavel Studeny, 2008). Ewell (2004) published a survey of these compression algorithms.

The Standard Compression Scheme for Unicode (SCSU) is defined in Unicode Technical Stan-
dard #6 and is based on a technique originally developed by Reuters. The basic premise of
SCSU is to define dynamically positioned windows into the Unicode code space, so that
characters belonging to small scripts (such as the Greek alphabet or Indic abugidas) can be
encoded in a single byte, representing an index into the active window. These windows are
preset to blocks expected to be in common use (e.g., Cyrillic), so the encoder doesn't have
to define them in these cases. There are also static windows that cannot be adjusted (A
Standard Compression Scheme for Unicode - UTR #6, 2005; Ewell, 2004).

The Binary Ordered Compression for Unicode (BOCU) concept was developed in 2001 by Mark
Davis and Markus Scherer for the ICU project. The main premise of BOCU-1 is to encode
each Unicode character as the difference from the previous character, and to represent small

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 2

//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

differences in fewer bytes than large differences. By encoding differences, BOCU-1 achieves
the same compression for all small alphabetic scripts, regardless of the block in which they
reside (Ewell, 2004; Scherer & Davis, 2002).

It is to be noted that SCSU is a Unicode Technical Standard (UTS#6) and BOCU is published
as a Unicode Technical Note (UTN#6), although both have the same number assigned (6).

Fast Compression Algorithm For Unicode Text (FAST) is a compression algorithm developed
based on the Lempel Ziv algorithm (Ziv & Lempel, 1977). Essentially it achieves faster
compression by finding repeating unicode sequences instead of repeating bytes. There are
other assumptions and variations made to LZ technique in addition to this (Pavel Studeny,
2008).

AIMCS is an Artificial Intelligence based Method for Compression of Short Strings, which is
specifically designed for compression of strings with the size of less than 160 characters (tiny
strings) (Abedi & Pourkiani, 2020).

SSE is a technique where texts are pre-processed by a method named sort and set empty
and are then compressed through the traditional lossless compression methods (Juncai Xu et.
al, 2017).

Further four different methods available for compressing short messages have been discussed in
this paper (Gardner-Stephen et. al, 2013) including Smaz and other closed source techniques.

This research

A hybrid encoding method is proposed relying on the three encoding techniques viz. Entropy
encoding, Dictionary coding and Delta encoding methods for optimal compression.

While existing techniques focus on either Unicode character sequences or only English char-
acters, Unishox uses multiple techhniques to achieve the best compression ratio all round.

For Unicode, Delta encoding is proposed because usually the difference between subsequent
symbols is quite less while encoding text of a particular language. SCSU is slightly better with
switching windows, but overall it was found that plain Delta coding works well considering
that usually there is only one language text to be compressed and some languages span a lot
of windows.

SCSU and BOCU do have special features for Unicode that Unishox does not address such as
dynamic windows, binary order maintenance, XML suitability and MIME friendliness. Unishox
uses plain delta encoding to achieve the best compression.

For English letters, unlike shoco, a fixed frequency table is proposed, generated based on
the characterestics of English language letter frequency. The research carried out by Oxford
University (What is the frequency of the letters of the alphabet in English?, 2012) and other
sources (Statistical Distributions of English Text, Archived from the Original, 2017) have been
used to arrive at a unique method that takes advantage of the conventions of the language.

A single fixed model is used because of the advantages it offers over the training models
of shoco. The disadvantage with the training model, although it may appear to offer more
compression, is that it does not consider the patterns that usually appear during text formation.
It can be seen that this performs better than pre-trained model of shoco (See performance
section).

This model, described in the subsequent section, along with a set of rules for switching between
the pre-defined sets of symbols in the model are used for encoding and decoding text.

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 3

//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

Model

In the ASCII chart, we have 95 printable letters starting from 32 through 126. For the purpose
of arriving at fixed codes for each of these letters, two sets of prefix-free codes are used.

The first set consists of 28 codes, which are: 00, 010, 011, 1000, 1001, 1010, 1011, 1100,
11010, 11011, 111000, 111001, 111010, 1110110, 1110111, 1111000, 1111001, 1111010,
11110110, 11110111, 11111000, 11111001, 11111010, 11111011, 11111100, 11111101,
11111110, 11111111. These are called vertical codes (vcodes).

The second set consists of 5 codes, which by default will be 00, 01, 10, 110, 111. These
are called horizontal codes (hcodes). These 5 codes can be configured according to the
composition of text that needs to be compressed.

With these two sets of codes, several sets of letters are formed as shown in the table below
and some rules are formed based on how patterns appear in short strings.

hcode — 00 01 10 110 111

J vcode Setl Set2 Set3 Setd Set 5
Alpha Sym Num Dictionary Delta

00 switch " switch <length> <code>

010 sp { , <distance> <sign>

011 e/E } . <delta>

1000 t/ T _ 0

1001 a/A < 1

1010 o/O0 > 9

1011 i/ : 2

1100 n/N If 5

11010 s/S crlf -

11011 r/ R [/

111000 /L] 3

111001 c/C '\ 4

111010 d/D 6

1110110 h/H 7

1110111 uv /U tab 8

1111000 p/P @ (
1111001 m /M *)
1111010 b /B | sp
11110110 g/ G 7 =
11110111 w /W ! +
11111000 f/F $
11111001 y /Y | %
11111010 v /V cr #
11111011 k /K ~ seq4
11111100 q/Q ' seq5

11111101 j/J seql seqb
11111110 x / X seq2 rpt
11111111 z/Z seq3 term

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 4

//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

Rules

Basic rules

= It can be seen that the more frequent symbols are assigned smaller codes.
= Set 1 is always active when beginning compression. So the letter e has the code 011, t
1010 and so on.

Upper case symbols

= For encoding uppercase letters, the switch symbol is used followed by 00 and the code
against the symbol itself. For example, E is encoded as 00 00 011.

= If uppercase letters appear continuously, then the encoder may decide to switch to upper
case using the prefix 00 00 00 00. After that, the same codes for lower case are used
to indicate upper case letters until the code sequence 00 00 is used again to return to
lower case.

Numbers and related symbols

= Symbols in Set 2 are encoded by first switching to the set by using 00 followed by 01.
So the symbol " is encoded as 00 01 00.

= Numbers in Set 3 are encoded by first switching to the set by using 00 followed by 10.
So the symbol 9 is encoded as 00 10 1010.

= For Set 3, whenever is switch is made from Set 1 to any number (0 to 9), it makes Set
3 active. So subsequent numbers symbols in Set 3 can be encoded without the switch
symbol, as in 111000 for 3, 111001 for 4 and so on.

= To return to Set 1 in this case, the code 0000 is used.

= However, when other symbols in Set 3 are encoded from Set 1, Set 3 is not made active.

Sticky sets

= When switching to Set 3 for encoding numbers (0-9), it becomes active and is said to
be sticky till Set 1 is made active using the symbol 0000.

= Encoding Upper case symbols become sticky when switching using 0000 0000.

= Encoding Unicode symbols become sticky when switching using 0000 010, as seen in a
subsequent section.

= However, no other set is sticky. Set 1 is default. Set 3 automatically becomes sticky
when any numeral is encoded and Upper case letters can be made sticky by using
00000000.

= Symbols in Set 2 are never sticky. Once encoded the previous sticky set becomes active.

Special symbols

= term in Set 3 indicates termination of encoding. This is used if length of the encoded
string is not available. In case the length of encoded string is available, term symbol
need not be encoded and encoding can stop with the last symbol encoded. However,
the first part of the term symbol needs to be encoded in the last byte after the bits for
the last symbol. Further if Unicode set is sticky and active, first it needs to be exited
using the exit sequence 11111 00 and then the term symbol should be encoded.

= rpt in Set 3 indicates that the symbol last encoded is to be repeated specified number
of times.

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 5
//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

= CRLF in Set 2 is encoded using a single code. It will be expanded as two bytes CR LF.

If only LF is used, such as in Unix like systems, a separate code is used in Set 2. Also,
in the rare case that only CR appears, another code is provided in Set 2.

Repeating letters

= If any letter repeats more than 3 times, a special code (rpt) is used as shown in Set 3

of the model.

= The encoder first codes the letter using the above codes. Then the rpt code is used

followed by the number of times the letter repeats.

= The number of times the letter repeats is coded using a special bit sequence as explained

in section Encoding counts that follows.

Repeating sections

If a section repeats, the switch code (00) and another horizontal code (110) is used
followed by two fields as described next.

— The first field indicates the length of the section that repeats.

The second field indicates the distance of the repeating section. The distance is counted
from the current position.

The optional third field is coded only if an array of text is encoded. It is a number
indicating the index of the array that the section belongs. If only one text is encoded,
then this field is not included.

The first, second and third fields are encoded as explained in the following section
Encoding counts.

Encoding Counts

For encoding counts such as length and distance, five codes are used: 0, 10, 110, 1110,
1111, each code indicating how many bits will follow to indicate count.

If code is 0, 2 bits would follow, that is, count is between 0 and 3.

If code is 10, 4 bits would follow, that is, count is between 4 and 19.

If code is 110, 7 bits would follow, that is, count is between 20 and 147.

If code is 1110, 11 bits would follow, that is, count is between 148 and 2195.

If code is 1111, 16 bits would follow, that is, count is between 2196 and 67732.

This is shown in tabular form below

Code Range Number of bits
0 O0to3 2
10 4 to 19 5
110 20 to 147 7

1110 148 to 2195 11
1111 2196 to 67732 16

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 6

//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

Encoding Unicode characters

The switch code 00 followed by 111 is used as prefix to indicate that a Unicode character
is being encoded.

First, the unicode number is decoded from the input source depending on how it was
encoded, such as UTF-8 or UTF-16.

For the first unicode character, the number decoded is re-coded to the output as it is,
using 00 111 followed by a code as shown in the table below followed by a sign bit 0
(positive), followed by given number of bits shown in the table, depending on the range
that the code belongs.

Code Range Number of bits
0 0 to 63 6

10 64 to 4159 12

110 4160 to 20543 14

1110 20544 to 86079 16
11110 86080 to 2183231 21
11111 Special code -

The Special code is explained in the next section.

For subsequent unicode characters, only the difference between the previous character
is re-coded to the output, using sign bit as 1 if the difference is negative. Thus, here,
delta coding is used.

After 00 111, one of the above codes is used, followed by the sign bit. The sign bit is
a single bit. 1 indicates that the number following is negative and 0 indicates that the
number following is positive.

After the sign bit, the unicode value (or difference) is encoded as a number. The number
of bits used depends on the range, as shown in the above table.

After encoding the unicode number, the state returns to Set 1, or whichever set was
active earlier, unless continuous unicode encoding was started. This is explained in the
next section.

Encoding continuous Unicode characters

= Since the prefix 00 110 may become an overhead when several Unicode are to be encoded

contigously, a continuous unicode encoding code is used (0000 010).

After 0000 010 is encoded, unicode characters are encoded continously using delta en-
coding, until an English character is encountered. When this happens, state is returned
to Set 1 using the Special code 11111 00 in the table shown in previous section is used.

The Special codes are used only when Unicode characters are coded continuously, to
indicate special characters and situations occuring in-between. What follows the Special
code 11111 is indicated using the table below:

Code Character/Situation

0 Space character
10 Switch
110 Comma (,)

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 7

//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

Code Character/Situation

1110 Full stop (.)
1111 Line feed (LF)

= It is found that the above characters appear frequently in between continous Unicode
characters and so Special codes are needed to avoid switching back and forth from Set
2.

= Other symbols in Set 2 or Set 3 can also be encoded within continuous Delta encoding
mode using the Switch Code in the above table.

Multi way access for Set 2

= Set 2 can be accessed regardless of which set is active, such as Set 1, Set 3, Continuous
delta coding or even when continuous Upper case is active. This is because the symbols
occur commonly in both Set 1 and 3 and Unicode symbol sequences.

= For the same reason, the space symbol appears both in Set 1 and Set 3.

Encoding punctuations

= Some languages, such as Japanese and Chinese use their own punctuation characters.
For example full-stop is indicated using U4-3002 which is represented visually as a small
circle.

= Encoding such special full-stops were supported in the earlier version of Unishox for
better compression. However since this was leading to confusion and ambiguity, any
special treatment for such punctuations are excluded in the present version of Unishox
(2) and this is left to delta coding. It also does not make much difference in compression
ratio.

Common templates

= Some special templates are known to occur frequently and are encoded using 00 10 00
followed the codes mentioned in the table below.

Code Situation

0 Template for date, time and phone numbers
10 Hex nibbles lower case

110 Hex GUID lower case

1110 Hex nibbles upper case

11110 Hex GUID upper case

11111 Binary (ASCII 0-31, 128-255)

= The code 0 indicates that one of the codes for Date, Time or Phone number follows,
which is encoded according to the following table:

Code Description Template

0 Standard ISO timestamp tfff-of-tf Ttf:rf:rf.fffZ
10 Date only tfff-of-tf

110 US Phone number (fff) frE-fFeF

1110 Time only tfirforf

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 8
//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

JEISS

The Journal of Open Source Software

Code Description Template
1111 Reserved

= Partial matches of the template can also be encoded using this. For example, the

string “2021-07-15T20:00:00" can be compressed using above template by specifying
how many characters of the template are unused the end. In this case 5 characters are
unused.

The encoding sequence would be: 00 10 00 0 <template code> <number of unused
letters> <filled template>. The method described in Encoding counts section is used
to encode <number of unused letters>.

In the template, following are the codes used and the size occupied in bits. Since fewer
bits are sufficient to represent a number, it results in lot of savings.

Letter Bits Range

o 1 Otol
t 2 0to3
r 3 Oto7
f 4 OtoF

Using this method, the ISO timestamp which is 24 bytes in length compresses to only
9 bytes.

For example, “2021-07-15T16:37:35" would be encoded as 00 10 00 0 0 10 0001 10
0000 0010 0001 0 0111 01 0101 01 0110 011 0111 011 0101. The codes are explained
in the table below:

Code Description

00 10 00 Code for common templates

0 Code for string template

0 Template used (tfff-of-tfTtf:rf:rf.fffZ)
10 0001 Encode count 5 unused at the end
10 0000 0010 0001 2021

00111 07

01 0101 15

01 0110 16

011 0111 37

011 0101 35

The codes 10 and 1110 are used to encode a sequence of lower and upper Hex nibbles
respectively. 10 or 1110 is followed by the count of nibbles encoded as explained in the
Encoding counts section. After this, each nibble is encoded using 4 bits each.

The code 110 and 11110 are used to encode lower and upper GUIDs respectively. 110
or 11110 is followed by each nibble of the GUID excluding the hyphens.

Finally the code 11111 is used for encoding binary symbols ranging from ASCII 0 to
31 and ASCII 128 to 255. The prefix code 00 10 00 11111 is used, followed by the
number of such binary symbols encoded as explained in Encoding counts section. After
this each byte is encoded with 8 bits per character.

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https: 9

//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

= Encoding binary symbols this way is not efficient and is only available to cover the entire

character set.

= The implementation actually tries to optimize encoding binary sequences by trying to
identify UTF-8 sequences within binary sequences in order to get a better compression

ratio.

Compression of frequently occuring sequences

= Provision for six frequently occuring text sequences is available with Unishox.

= Depending on the type of text being encoded following sequences have been identified.

Type of text

Frequently occuring sequences

Default (favours all types)
English sentences

URL

JSON

HTML

XML

(71 [1 </ =11 107 [/

[the], [and], [tion], [with], [ing], [ment]

[https://], [www.], [.com], [http://], [-org], [.-net]

[0 1 0] B 1] B

[</], [="], [div], [href], [class], [<p>]

[</1. [="] ["> 1, [<?xml version="1.0"], [xmlns:], [://]

Redefinition of Horizontal codes and Presets

= The horizontal codes can be redefined to get better compression ratio, depending on
composition of the text to be encoded.

= Several "preset” codes have been identified for achieving better compression ratios for
different compositions as below (Codes are for Alpha, Sym, Num, Dict, Delta):

= For preset 1 (Alpha only) there are no horizontal code required. For encoding upper
case symbols, just the switch code followed by the letter code is sufficient. Further,
continuous upper case can be accomplished by using two switch codes. Termination of
encoding is accomplished by encoding 3 or 4 switch codes continuously depending on
whether continuous upper case encoding is active or not.

= The codes marked x in the table are the sets that are not expected in the text.

Preset Codes Frequent Sequences
0 Default (favours all types) 00, 01, 10, 110, 111 Default

1 Alpha only None * English sentences

2 Alpha | Numeric only 0, x, 1, x, x English sentences

3 Alpha, Num | Sym only 0, 10, 11, x, x Default

4 Alpha, Num | Sym only (Text) 0, 10, 11, x, x English sentences

5 Favor Alpha

6 Favor Dictionary

7 Favor Symbols

8 Favor Umlaut

9 No Dictionary

10 No Unicode

11 No Unicode (Text)
12 Favor URL

13 Favor JSON

14 Favor JSON No Unicode

0, 100, 101, 110, 111 English sentences

00, 01, 110, 10, 111 Default

100, 0, 101, 110, 111 Default

100, 101, 110, 111, 0 Default

00, 01, 10, x, 11 Default

00, 01, 10, 11, x Default

00, 01, 10, 11, x English sentences
00, 01, 10, 110, 111 URL

00, 01, 10, 110, 111 JSON

00, 01, 10, 11, x JSON

Ramanathan, A., (2022).
//doi.org/10.21105/joss.03919

Unishox: A hybrid encoder for Short Unicode Strings.

Journal of Open Source Software, 7(69), 3919. https:10

https://
http://
https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

SS

The Journal of Open Source Software

Preset Codes Frequent Sequences
15 Favor XML 00, 01, 10, 110, 111 XML
16 Favor HTML 00, 01, 10, 110, 111 HTML

However, the default horizontal codes work fine for most cases.

Applications

Compression for low memory devices such as Arduino and ESP8266
Sending messages over Websockets

Compression of Chat application text exchange including Emojis
Storing compressed text in databases

Faster retrieval speed when used as join keys

Bandwidth cost saving for messages transferred to and from Cloud infrastructure

Storage cost reduction for Cloud databases
Some people even use it for obfuscation

Implementation

Unishox

https://github.com/siara-cc/Unishox

Unishox for Javascript
https://github.com/siara-cc/Unishox/_JS

Python bindings for Unishox
https://github.com /tweedge /unishox2-py3

Unishox 1 ported to Python for Tasmota
https://github.com/arendst/Tasmota/tree/development/tools/unishox

Unishox Compression Library for Arduino Progmem

https://github.com/siara-cc/Unishox/_Arduino/_Progmem/_lib
Sqlite3 User Defined Function for Unishox as loadable extension
https://github.com/siara-cc/Unishox/_Sqlite/_UDF

Sqlite3 Library for ESP32
https://github.com/siara-cc/esp32/_arduino/_sqlite3/_lib
Sqlite3 Library for ESP8266
https://github.com/siara-cc/esp/_arduino/_sqlite3/_lib

Sqlite3 Library for ESP-IDF
https://github.com/siara-cc/esp32-idf-sqlite3

According to the above Rules and Frequency table, an implementation has been developed
licensed under Apache License 2.0.

Unishox has been hosted on Github and used in several open source projects shown below:

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings.

//doi.org/10.21105/joss.03919

Journal of Open Source Software, 7(69), 3919.

https:11

https://github.com/siara-cc/Unishox
https://github.com/siara-cc/Unishox/_JS
https://github.com/tweedge/unishox2-py3
https://github.com/arendst/Tasmota/tree/development/tools/unishox
https://github.com/siara-cc/Unishox/_Arduino/_Progmem/_lib
https://github.com/siara-cc/Unishox/_Sqlite/_UDF
https://github.com/siara-cc/esp32/_arduino/_sqlite3/_lib
https://github.com/siara-cc/esp/_arduino/_sqlite3/_lib
https://github.com/siara-cc/esp32-idf-sqlite3
https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

Performance Comparison

The performance of Unishox was compared with the various implementations already available
for short strings and shown in subsequent sections.

Comparison with Unicode compression techniques

Language and Text Size Unishox SCSU BOCU
English 58 30 58 58
Chinese 49 36 36 37
Spanish 69 38 67 71
Hindi 144 53 55 55
Bengali 117 41 48 47
Portugese 60 36 55 63
Russian 82 44 48 53
Japanese 61 39 37 45
Punjabi 141 51 57 59
Marathi 142 52 55 58
Telugu 104 39 42 44
Turkish 72 49 64 78
Korean 82 45 61 60
French 76 39 73 79
German 68 36 66 70
Vietnamese 82 59 72 83
Tamil 128 49 50 52

= All sizes are in bytes.

The above table compares the compression performance between SCSU, BOCU and Unishox
for languages that are spoken by over 75 million people (according to Wikipedia).

The text used is translation of Kahlil Gibran's quote “Beauty is not in the face. Beauty is a
light in the heart.” in the above languages. The actual translated text could not be displayed

due to limitation of Markdown format.

Disclaimer: Natives may not consider all translations to be accurate as they were translated
online, although some attempt was made to check accuracy by reverse translation.

Comparison with non-Unicode

compression techniques

String Size Unishox Smaz Shoco
Beauty is not in the 58 30 31 46
face. Beauty is a

light in the heart.

The quick brown 44 31 31 38

fox jumps over the
lazy dog.

Ramanathan, A., (2022).

Unishox: A hybrid encoder for Short Unicode Strings.

//doi.org/10.21105/joss.03919

Journal of Open Source Software, 7(69), 3919.

https:12

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

String Size Unishox Smaz Shoco
WRITING 63 49 72 63
ENTIRELY IN

BLOCK CAPITALS

IS SHOUTING, and

it's rude

Grawlix is a string 82 60 58 63
of typographical

symbols (such as

%@©$|*!) coined in

the 1960s

Rose is a rose is a 35 12 20 25
rose is a rose.

Gravitational 59 50 65 51

Constant (G):
6.67300 x 10°{}-11

m™{}3 kg {}-1

s {}-2

039f7094-83e4- 36 18 53 36
4d7f-aa38-

8844c67bd82d

2021-07- 24 9 32 24
15T16:37:35.897Z

(760) 756-7568 14 7 20 14
This is a 42 15 32 25
[0000000000000000000000Ng

string

= All sizes are in bytes.

The above table compares the compression performance of Smaz, shoco and Unishox for
different types of strings.

Comparison of file compression

Further - world95.txt - the text file obtained from The Project Gutenberg Etext of th
e 1995 CIA World Factbook was compressed using the three techniques and following are
the results:

Original size: 2,988,577 bytes

After Compression using shoco original model: 2,385,934 bytes

After Compression using shoco trained using world95.txt: 2,088,141 bytes
After Compression using Unishox (1024 block size): 1,689,289 bytes
After Compression using Unishox (65536 block size): 1,128,302 bytes

Memory requirements
As for operating memory required, Shoco requires over 2k bytes, smaz requires over 1k. But

Unishox requires only around 300 bytes for compressor and decompressor together, ideal for
using it with even Arduino Uno.

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https:13
//doi.org/10.21105/joss.03919

https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

The Journal of Open Source Software

Speed

Unishox was found to be the slowest of all since employs several to achieve the best compres-
sion. However this should not be too much of an issue in most cases when a single string or
few strings are handled at a time.

Conclusion

As can be seen from the performance numbers, Unishox performs better than available tech-
niques. It can also be seen that it provides optimal compression for text, numbers and special
characters in different languages all round.

It is especially useful in memory constrained environments such as embedded devices and
sending text messages over websockets to implement Chat bots and applications.

Further work

It is proposed to achieve better compression by choosing better codes during the course of
compression using a self-learning process.

It is also proposed to make Unishox available in more languages than just C, Javascript and
Python, such as Java and C#.Net. It is also proposed to make it available for more platforms.

Acknowledgements

The author is sincerely thankful to the following people who have notably contributed towards
the development of Unishox implementation:

= Thanks to Jonathan Greenblatt for his port of Unishox2 that works on Particle Photon

= Thanks to Chris Partridge for his port of Unishox2 to CPython and his comprehensive
tests using Hypothesis and extensive performance tests.

= Thanks to Stephan Hadinger for his port of Unishoxl to Python for Tasmota

= Thanks to Luis Diaz Mas for his PRs to support MSVC and CMake setup

= Thanks to James Z.M. Gao for his PRs on improving presets, safety checks, terminator
codes, unit tests, bug fixes, documentation and more

References

A standard compression scheme for unicode - UTR #6. (2005). Unicode Consortium. https:
//www.unicode.org/reports/tr6/tr6-4.html

Abedi, M., & Pourkiani, M. (2020). AIMCS: An artificial intelligence based method for
compression of short strings. 2020 IEEE 18th World Symposium on Applied Machine In-
telligence and Informatics (SAMI), 311-318. https://doi.org/10.1109/SAMI48414.2020.
9108719

Burrows, M., & Wheeler, D. (1994). A Block-Sorting Lossless Data Compression Algorithm.
In Research Report 124, Digital Equipment Corporation, Palo Alto, CA, USA. https://
www.hpl.hp.com /techreports/Compag-DEC/SRC-RR-124.pdf

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https:14
//doi.org/10.21105/joss.03919

https://github.com/leafgarden
https://github.com/siara-cc/Unishox/tree/master/Arduino
https://github.com/tweedge
https://github.com/tweedge/unishox2-py3
https://github.com/tweedge/unishox2-py3#integration-tests
https://github.com/tweedge/unishox2-py3#integration-tests
https://hypothesis.readthedocs.io/en/latest
https://github.com/tweedge/unishox2-py3#performance
https://github.com/s-hadinger
https://github.com/arendst/Tasmota/tree/development/tools/unishox
https://github.com/piponazo
https://github.com/gsm55
https://www.unicode.org/reports/tr6/tr6-4.html
https://www.unicode.org/reports/tr6/tr6-4.html
https://doi.org/10.1109/SAMI48414.2020.9108719
https://doi.org/10.1109/SAMI48414.2020.9108719
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

SS

The Journal of Open Source Software

Delta encoding. (2019). Wikipedia. https://en.wikipedia.org/wiki/Delta_encoding

Ewell, D. (2004). A survey of Unicode compression, Unicode Technical Note #14, version 1.
http://www.unicode.org/notes/tn14/

Gardner-Stephen et. al. (2013). Improving compression of short messages. International
Journal of Communications, Network and System Sciences, 6, 497. https://doi.org/10.
4236/ijcns.2013.612053

Huffman, D. (1952). A method for the construction of minimum-redundancy codes. Proc.
IRE, 40(9), 1098-1101. https://doi.org/10.1109/JRPROC.1952.273898

Juncai Xu et. al. (2017). SSE lossless compression method for the text of the insignificance
of the lines order. ArXiv, abs/1709.04035. https://arxiv.org/pdf/1709.04035

MacKay, D. J. C. (2003). Information theory, inference and learning algorithms. Cambridge
University Press. https://doi.org/10.1109/tit.2004.834752

Pavel Studeny, O. S. A., Ondfej Holecek. (2008). Fast Compression Algorithm For Unicode
Text, Unicode Technical Note #31, version 2. http://www.unicode.org/notes/tn31/

Sanfilippo, S. (2012). SMAZ - compression for very small strings. github.com. https://
github.com/antirez/smaz

Scherer, M. W., & Davis, Mark. (2002). BOCU-1: MIME-Compatible Unicode Compression,
Unicode Technical Note #6, version 1. http://www.unicode.org/notes/tn6/

Schramm, C. (2015). Shoco: A fast compressor for short strings. https://ed-von-schleck.
github.io/shoco

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27(3),
379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Statistical distributions of english text, archived from the original. ~ (2017). data-
compression.com. https://web.archive.org/web/20170918020907 /http://www.
data-compression.com/english.html

What is the frequency of the letters of the alphabet in English? (2012). Oxford University
Press, Oxford Dictionary.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory, 23(3), 337-343. https://doi.org/10.1109/TIT.1977.1055714

Ramanathan, A., (2022). Unishox: A hybrid encoder for Short Unicode Strings. Journal of Open Source Software, 7(69), 3919. https:15

//doi.org/10.21105 /joss.03919

https://en.wikipedia.org/wiki/Delta_encoding
http://www.unicode.org/notes/tn14/
https://doi.org/10.4236/ijcns.2013.612053
https://doi.org/10.4236/ijcns.2013.612053
https://doi.org/10.1109/JRPROC.1952.273898
https://arxiv.org/pdf/1709.04035
https://doi.org/10.1109/tit.2004.834752
http://www.unicode.org/notes/tn31/
https://github.com/antirez/smaz
https://github.com/antirez/smaz
http://www.unicode.org/notes/tn6/
https://ed-von-schleck.github.io/shoco
https://ed-von-schleck.github.io/shoco
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://web.archive.org/web/20170918020907/http://www.data-compression.com/english.html
https://web.archive.org/web/20170918020907/http://www.data-compression.com/english.html
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.21105/joss.03919
https://doi.org/10.21105/joss.03919

	Summary
	Statement of need
	Existing Techniques
	Short string compression techniques

	This research
	Model
	Rules
	Basic rules
	Upper case symbols
	Numbers and related symbols
	Sticky sets
	Special symbols
	Repeating letters
	Repeating sections
	Encoding Counts
	Encoding Unicode characters
	Encoding continuous Unicode characters
	Multi way access for Set 2
	Encoding punctuations
	Common templates
	Compression of frequently occuring sequences
	Redefinition of Horizontal codes and Presets

	Applications
	Implementation
	Performance Comparison
	Comparison with Unicode compression techniques
	Comparison with non-Unicode compression techniques
	Comparison of file compression
	Memory requirements

	Speed
	Conclusion
	Further work
	Acknowledgements
	References

