
WaveletsExt.jl: Extending the boundaries of wavelets in
Julia
Zeng Fung Liew∗1, Shozen Dan†2, and Naoki Saito3

1 Department of Statistics, University of California, Davis, United States 2 Department of
Mathematics, Imperial College London, United Kingdom 3 Department of Mathematics, University
of California, Davis, United States

DOI: 10.21105/joss.03937

Software
• Review
• Repository
• Archive

Editor: Brian McFee
Reviewers:

• @lostanlen
• @malmaud

Submitted: 11 November 2021
Published: 23 January 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Whether it is seismic surveys, ECG signals, stock market trends, or sensor data, the wavelet
and wavelet packet transforms are powerful tools for signal analysis and classification with
many advantages over the conventional Fourier methods. Primary among them is the ability
to extract information localized in both time and frequency domains, enabling multiresolution
analysis (Daubechies, 1992; Mallat, 2009). As such, wavelets and wavelet packets have
become popular tools for computational harmonic analysis. WaveletsExt.jl was developed
to augment Wavelets.jl (the existing wavelet toolbox for Julia) by providing routines for
wavelet analysis, wavelet packet analysis, and associated utilities.

Statement of Need

Julia’s principal package for wavelets is Wavelets.jl (JuliaDSP/Wavelets.jl, 2021), which
provides the essential building blocks for data analysis using wavelets. These include 1-D,
2-D, and 3-D wavelet transforms via filter banks or lifting, a range of thresholding functions,
and other utilities. However, as a general-purpose package for wavelets, Wavelets.jl does
not include many targeted and sophisticated methods present in the literature.
WaveletsExt.jl (Wavelets Extension) enlarges the wavelet toolbox for Julia by providing a
host of useful wavelet-based functions such as Stationary Wavelet Transform (Nason & Silver-
man, 1995), Autocorrelation Wavelet Transform (Saito & Beylkin, 1993), Local Discriminant
Basis (Saito & Coifman, 1995), and Shift-invariant Wavelet Packet Decomposition (Cohen
et al., 1995). The package also contains denoising utilities such as SureShrink (Donoho &
Johnstone, 1995) and Relative Error Shrink (Irion & Saito, 2017) as well as several data
visualization utilities.
One of the most distinguishing features of WaveletsExt.jl is the presence of algorithms for
handling an ensemble of input signals. Currently, Wavelets.jl implements best basis selec-
tion utilities for wavelet packets for a single input. However, it does not include methods for
selecting a single best basis for a set of inputs with similar properties (e.g., signals or images
belonging to the same class), which is valuable for feature extraction and data compression. To
address this, WaveletsExt.jl implements the Joint Best Basis (JBB) (Wickerhauser, 1996)
and the Least Statistically Dependent Basis (LSDB) (Saito, 2001), which provide approxi-
mations of the Principal Component Analysis (PCA) and Independent Component Analysis
(ICA), respectively, in a computationally fast manner through a dictionary of orthonormal
bases.

∗co-first author
†co-first author, corresponding author

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

1

https://doi.org/10.21105/joss.03937
https://github.com/openjournals/joss-reviews/issues/3937
https://github.com/UCD4IDS/WaveletsExt.jl
https://doi.org/10.5281/zenodo.5893843
https://brianmcfee.net
https://github.com/lostanlen
https://github.com/malmaud
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

Examples

1. Redundant Wavelet Transforms

WaveletsExt.jl implements several redundant wavelet transforms including Autocorrelation
Wavelet Transform (Saito & Beylkin, 1993) and Stationary Wavelet Transform (SWT) (Nason
& Silverman, 1995). These transformations can be performed using the acdwt and sdwt
functions, and the resulting decomposition can be visualized with the wiggle function included
in WaveletsExt.jl.

using Plots, Wavelets, WaveletsExt

x = zeros(1<<8) # Generate a unit impulse (dirac delta) signal
x[128] = 1
wt = wavelet(WT.db4) # Construct Daubechies 4-tap wavelet filter

----- Autocorrelation Wavelet Transforms -----
y = acdwt(x, wt)
p1 = wiggle(y) |> p -> plot!(p, yticks=1:9, title="Autocorrelation WT")

----- Stationary Wavelet Transforms -----
y = sdwt(x, wt)
p2 = wiggle(y) |> p -> plot!(p, yticks=1:9, title="Stationary WT")

Combine and save plot
p = plot(p1, p2, layout=(1,2), size=(600,300))
savefig(p, "transforms.png")

Figure 1: “Wiggle” plots displaying the value of coefficients at each level of the autocorrelation and
stationary wavelet transform for a unit impulse signal.

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

2

https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

2. Best Basis Algorithms

WaveletsExt.jl can select a best basis for a multiple signal input (i.e., an array of signals)
through the Joint Best Basis (JBB) (Wickerhauser, 1996) or Least Statistically Dependent
Basis (LSDB) (Saito, 2001) algorithms. The resulting best basis tree can be visualized using
plot_tfbdry also included in WaveletsExt.jl.

using Plots, Wavelets, WaveletsExt

Generate 100 noisy heavysine signals of length 2�
x = generatesignals(:heavysine, 8) |>

x -> duplicatesignals(x, 100, 2, true, 0.5)

Wavelet packet decomposition of all signals
xw = wpdall(x, wt, 6)

----- Joint Best Basis (JBB)
tree = bestbasistree(xw, JBB())
p1 = plot_tfbdry(tree,

node_color=:green,
line_color=:black,
background_color=:white) |>

p -> plot!(p, title="JBB")

----- Least Statistically Dependent Basis (LSDB)
tree = bestbasistree(xw, LSDB())
p2 = plot_tfbdry(tree,

node_color=:green,
line_color=:black,
background_color=:white) |>

p -> plot!(p, title="LSDB")

Combine and save plot
p = plot(p1, p2, layout=(1,2), size=(600,300))
savefig(p, "bestbasis.png")

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

3

https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

Figure 2: The best basis trees of 100 HeaviSine signals (A sinusoid + two Heaviside step functions)
(Buckheit & Donoho, 1995; Donoho & Johnstone, 1995) selected by the JBB and LSDB algorithms.
Each row represents a decomposition level, where level 0 is the original input signal, and each cell
represents a frequency subband (low to high frequency from left to right). The colored cells indicate
those subbands selected by the JBB (left) and the LSDB (right) algorithms.

3. Denoising Algorithms

WaveletsExt.jl contains two functions for denoising: denoise and denoiseall. The
former denoises a single signal input whereas the latter denoises multiple signal input. For
more examples of denoising algorithms in WaveletsExt.jl, see (Liew et al., 2021).

using Plots, Wavelets, WaveletsExt

Generate 6 circularly shifted HeaviSine signals
x� = generatesignals(:heavisine, 8) |>

x -> duplicatesignals(x, 6, 2, false)

Generate 6 noisy versions of the original signals
x = generatesignals(:heavisine, 8) |>

x -> duplicatesignals(x, 6, 2, true, 0.8)

Decompose each noisy signal
xw = wpdall(x, wt)

Get best basis tree from the decomposition of signals
bt = bestbasistree(xw, JBB())

Get best basis coefficients based on best basis tree
y = bestbasiscoef(xw, bt)

Denoise all signals based on computed best basis tree

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

4

https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

x̂ = denoiseall(y, :wpt, wt, tree=bt)

Plot results
p1 = plot(title="Noisy Signals")
wiggle!(x�, sc=0.7, FaceColor=:white, ZDir=:reverse)
wiggle!(x, sc=0.7, FaceColor=:white, ZDir=:reverse)

p2 = plot(title="Denoised Signals")
wiggle!(x�, sc=0.7, FaceColor=:white, ZDir=:reverse)
wiggle!(x̂, sc=0.7, FaceColor=:white, ZDir=:reverse)

Combine and save plot
p = plot(p1, p2, layout=(1,2), size=(600,300))
savefig(p, "denoising.png")

Figure 3: Left: HeaviSine signals with Gaussian noise. Black lines represent the original (non-noisy)
signal. Right: Simultaneously denoised signals using the JBB algorithm with a universal thresholding
constant determined by the VisuShrink method (Donoho & Johnstone, 1994).

4. Feature Extraction

For signal classification problems, users can extract distinguishing features localized in both
the time and frequency domains using the Local Discriminant Basis (LDB) algorithm. Further
details can be found in the original papers by Saito and his collaborators (Saito et al., 2002;
Saito & Coifman, 1995) as well as the interactive tutorial (Dan et al., 2021).

using Plots, Wavelets, WaveletsExt

Generate 100 signals for each class of cylinder-bell-funnel
X, y = generateclassdata(ClassData(:cbf, 100, 100, 100))
View sample signals and how each class differs from one another

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

5

https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

cylinder = wiggle(X[:,1:5], sc=0.3, EdgeColor=:white, FaceColor=:white)
plot!(cylinder, yticks=1:5, ylabel="Cylinder")
bell = wiggle(X[:,101:105], sc=0.3, EdgeColor=:white, FaceColor=:white)
plot!(bell, yticks=1:5, ylabel="Bell")
funnel = wiggle(X[:,201:205], sc=0.3, EdgeColor=:white, FaceColor=:white)
plot!(funnel, yticks=1:5, ylabel="Funnel")
p1 = plot(cylinder, bell, funnel, layout=(3,1))

Instantiate the LDB object
wt = wavelet(WT.coif4)
ldb = LocalDiscriminantBasis(

wt=wt,
max_dec_level=6,
dm=SymmetricRelativeEntropy(),
en=TimeFrequency(),
dp=BasisDiscriminantMeasure(),
top_k=10,
n_features=10 # Number of features to extract

)

Extract features using LDB
X̂ = fit_transform(ldb, X, y)

Plot the best basis for feature extraction
p2 = plot_tfbdry(ldb.tree,

node_color=:green,
line_color=:black,
background_color=:white)

plot!(p2, title="Basis Selection using LDB")

Combine and save plot
p = plot(p1, p2, size=(600,300))
savefig(p, "ldb.png")

Figure 4: Left: Examples of Cylinder, Bell, and Funnel signals. Right: The best basis tree selected
by the LDB algorithm for discriminating the three classes of signals.

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

6

https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

Reproducible Research

WaveletsExt.jl was partially inspired by the WaveLab library in MATLAB, which was devel-
oped to enable reproducible wavelet research (Buckheit & Donoho, 1995). In this spirit, we
wrote a series of tutorials, examples, and experiments using Pluto.jl (Dan et al., 2021; Liew
et al., 2021), a platform with which Julia users can create and share reactive documents (Van
der Plas, 2021). By downloading and running these so-called Pluto notebooks, researchers and
students alike can reproduce the results of our research and interactively adjust parameters to
see the changes in experiment outcomes.

Acknowledgements

This project was partially supported by the following grants from the US National Science
Foundation: DMS-1148643; DMS-1418779; DMS-1912747; and CCF-1934568.

References

Buckheit, J. B., & Donoho, D. L. (1995). WaveLab and Reproducible Research. In A.
Antoniadis & G. Oppenheim (Eds.), Wavelets and Statistics (pp. 55–81). Springer.
https://doi.org/10.1007/978-1-4612-2544-7_5

Cohen, I., Raz, S., & Malah, D. (1995). Shift invariant wavelet packet bases. 1995 Inter-
national Conference on Acoustics, Speech, and Signal Processing, 2, 1081–1084 vol.2.
https://doi.org/10.1109/ICASSP.1995.480422

Dan, S., Liew, Z. F., & Saito, N. (2021). Feature extraction for signal classification with
local discriminant basis. In GitHub repository. GitHub. https://github.com/UCD4IDS/
LDBExperiment

Daubechies, I. (1992). Ten Lectures on Wavelets. Society for Industrial & Applied Mathe-
matics. https://doi.org/10.1137/1.9781611970104

Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3), 425–455. https://doi.org/10.1093/biomet/81.3.425

Donoho, D. L., & Johnstone, I. M. (1995). Adapting to Unknown Smoothness via Wavelet
Shrinkage. Journal of the American Statistical Association, 90(432), 1200–1224. https:
//doi.org/10.2307/2291512

Irion, J., & Saito, N. (2017). Efficient Approximation and Denoising of Graph Signals Using
the Multiscale Basis Dictionaries. IEEE Transactions on Signal and Information Processing
over Networks, 3(3), 607–616. https://doi.org/10.1109/TSIPN.2016.2632039

JuliaDSP/Wavelets.jl. (2021). Julia DSP. https://github.com/JuliaDSP/Wavelets.jl
Liew, Z. F., Dan, S., & Saito, N. (2021). Denoising experiment using wavelet transforms,

autocorrelation wavelet transforms, stationary wavelet transforms. In GitHub repository.
GitHub. https://github.com/UCD4IDS/WaveletsDenoisingExperiment

Mallat, S. (2009). A wavelet tour of signal processing (third edition). Academic Press.
https://doi.org/10.1016/B978-0-12-374370-1.50001-9

Nason, G. P., & Silverman, B. W. (1995). The Stationary Wavelet Transform and some
Statistical Applications (A. Antoniadis & G. Oppenheim, Eds.; pp. 281–299). Springer.
https://doi.org/10.1007/978-1-4612-2544-7_17

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

7

https://doi.org/10.1007/978-1-4612-2544-7_5
https://doi.org/10.1109/ICASSP.1995.480422
https://github.com/UCD4IDS/LDBExperiment
https://github.com/UCD4IDS/LDBExperiment
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.2307/2291512
https://doi.org/10.2307/2291512
https://doi.org/10.1109/TSIPN.2016.2632039
https://github.com/JuliaDSP/Wavelets.jl
https://github.com/UCD4IDS/WaveletsDenoisingExperiment
https://doi.org/10.1016/B978-0-12-374370-1.50001-9
https://doi.org/10.1007/978-1-4612-2544-7_17
https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

Saito, N. (2001). Image approximation and modeling via least statistically dependent
bases. Pattern Recognition, 34(9), 1765–1784. https://doi.org/10.1016/S0031-3203(00)
00116-3

Saito, N., & Beylkin, G. (1993). Multiresolution representations using the autocorrelation
functions of compactly supported wavelets. IEEE Transactions on Signal Processing,
41(12), 3584–3590. https://doi.org/10.1109/78.258102

Saito, N., & Coifman, R. R. (1995). Local discriminant bases and their applications. Journal of
Mathematical Imaging and Vision, 5(4), 337–358. https://doi.org/10.1007/BF01250288

Saito, N., Coifman, R. R., Geshwind, F. B., & Warner, F. (2002). Discriminant feature
extraction using empirical probability density estimation and a local basis library. Pattern
Recognition, 35(12), 2841–2852. https://doi.org/10.1016/S0031-3203(02)00019-5

Van der Plas, F. (2021). Pluto.jl. In GitHub repository. GitHub. https://github.com/fonsp/
Pluto.jl

Wickerhauser, M. V. (1996). Adapted Wavelet Analysis: From Theory to Software. A K
Peters/CRC Press. https://doi.org/10.1201/9781439863619

Liew et al., (2022). WaveletsExt.jl: Extending the boundaries of wavelets in Julia. Journal of Open Source Software, 7(69), 3937. https:
//doi.org/10.21105/joss.03937

8

https://doi.org/10.1016/S0031-3203(00)00116-3
https://doi.org/10.1016/S0031-3203(00)00116-3
https://doi.org/10.1109/78.258102
https://doi.org/10.1007/BF01250288
https://doi.org/10.1016/S0031-3203(02)00019-5
https://github.com/fonsp/Pluto.jl
https://github.com/fonsp/Pluto.jl
https://doi.org/10.1201/9781439863619
https://doi.org/10.21105/joss.03937
https://doi.org/10.21105/joss.03937

	Summary
	Statement of Need
	Examples
	1. Redundant Wavelet Transforms
	2. Best Basis Algorithms
	3. Denoising Algorithms
	4. Feature Extraction

	Reproducible Research
	Acknowledgements
	References

