
pyscreener: A Python Wrapper for Computational
Docking Software
David E. Graff12 and Connor W. Coley23¶

1 Department of Chemistry and Chemical Biology, Harvard University 2 Department of Chemical
Engineering, Massachusetts Institute of Technology 3 Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology ¶ Corresponding author

DOI: 10.21105/joss.03950

Software
• Review
• Repository
• Archive

Editor: Richard Gowers
Reviewers:

• @mikemhenry
• @rvhonorato

Submitted: 17 November 2021
Published: 16 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
pyscreener is a Python library that seeks to alleviate the challenges of large-scale structure-
based design using computational docking. It provides a simple and uniform interface that is
agnostic to the backend docking engine with which to calculate the docking score of a given
molecule in a specified active site. Additionally, pyscreener features first-class support for
task distribution, allowing users to seamlessly scale their code from a local, multi-core setup to
a large, heterogeneous resource allocation.

Statement of Need
Computational docking is an important technique in structure-based drug design that enables
the rapid approximation of binding affinity for a candidate ligand in a matter of CPU seconds.
With the growing popularity of ultra-large ligand libraries, docking is increasingly used to sift
through hundreds of millions of compounds to try to identify novel and potent binders for a
variety of protein targets (Gorgulla et al., 2020; Lyu et al., 2019). There are many choices
of docking software, and certain software are better suited towards specific protein-ligand
contexts (e.g., flexible protein side chains or sugar-like ligand molecules). Switching between
these software is often not trivial as the input preparation, simulation, and output parsing
pipelines differ between each software.

In addition, many of these programs exist only as command-line applications and lack Python
bindings. This presents an additional challenge for their integration into molecular optimization
workflows, such as reinforcement learning or genetic algorithms. Molecular optimization
objectives have largely been limited to benchmark tasks, such as penalized logP, QED, JNK3
or GSK3β inhibitor classification (Li et al., 2018), and others contained in the GuacaMol
library (Brown et al., 2019). These benchmarks are useful for comparing molecular design
techniques, but they are not representative of true drug discovery tasks in terms of complexity;
computational docking is at least one step in the right direction.

While many molecular optimization techniques propose new molecules in the form of SMILES
strings (Elton et al., 2019), most docking programs accept input in the form of molecular
supply files with predefined 3D geometry (e.g., Mol2 or PDBQT format). Using the docking
score of a molecule as a design objective thus requires an ad hoc implementation for which
no standardized approach exists. The vina library (Eberhardt et al., 2021) is currently the
only library capable of performing molecular docking within Python code, but it is limited to
docking molecules using solely AutoDock Vina as the backend docking engine. Moreover, the
object model of the vina library accepts input ligands only as PDBQT files or strings and
still does not address the need to quickly calculate the docking score of a molecule from its
SMILES string.

Graff, & Coley. (2022). pyscreener: A Python Wrapper for Computational Docking Software. Journal of Open Source Software, 7(71), 3950.
https://doi.org/10.21105/joss.03950.

1

https://doi.org/10.21105/joss.03950
https://github.com/openjournals/joss-reviews/issues/3950
https://github.com/coleygroup/pyscreener.git
https://doi.org/10.5281/zenodo.6327783
https://github.com/mikemhenry
https://github.com/rvhonorato
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03950

In our work on the MolPAL software (Graff et al., 2021), we required a library that is able to
accept molecular inputs as SMILES strings and output their corresponding docking scores for a
given receptor and docking box. Our use-case also called for docking large batches of molecules
across large and distributed hardware setups. Lastly, we desired that our library be flexible
with respect to the underlying docking engine, allowing us to use a variety of backend docking
software (e.g., Vina (Trott & Olson, 2010), Smina (Koes et al., 2013), QVina (Alhossary et al.,
2015), or DOCK6 (Allen et al., 2015)) with minimal changes to client code. To that end, we
developed pyscreener, a Python library that is flexible with respect to both molecular input
format and docking engine that transparently handles the distribution of docking simulations
across large resource allocations.

Implementation and Performance
The primary design goals with pyscreener were to (1) provide a simple interface with which
to calculate the docking score of an input small molecule and (2) transparently distribute the
corresponding docking simulations across a large resource allocation. The object model of
pyscreener relies on four classes: CalculationData, CalculationMetadata, DockingRunner,
and DockingVirtualScreen. A docking simulation in pyscreener is fully described by a
CalculationData and an associated CalculationMetadata. High-level information about
the simulation that is common to all docking software (e.g., target protein, docking box,
name of the ligand, the paths under which inputs and outputs will be stored) is stored in
the CalculationData object. A CalculationMetadata contains the set of software-specific
arguments for the simulation, such as exhaustiveness for the AutoDock Vina family of
software or parameters for SPH file preparation for DOCK6.

The pyscreener object model separates data from behavior by placing the responsibility of
actually preparing, running, and parsing simulations inside the DockingRunner class. This
stateless class defines methods to prepare simulation inputs, perform the simulation of the
corresponding inputs, and parse the resulting output for a given CalculationData and
CalculationMetadata pair. By placing this logic inside static methods rather than attaching
them to the CalculationData object, pyscreener limits network data transfer overhead during
task distribution. The separation also allows for the straightforward addition of new backend
docking engines to pyscreener, as this entails only the specification of the corresponding
CalculationMetadata and DockingRunner subclasses.

pyscreener also contains the DockingVirtualScreen class, which contains a template Calcu

lationData and CalculationMetadata with which to dock each input molecule, i.e., a virtual
screening protocol. The class defines a __call__() method which takes SMILES strings or
chemical files in any format supported by OpenBabel (O’Boyle et al., 2011) as input and
distributes the corresponding docking simulations across the resources in the given hardware
allocation, returning a docking score for each input molecule.

Graff, & Coley. (2022). pyscreener: A Python Wrapper for Computational Docking Software. Journal of Open Source Software, 7(71), 3950.
https://doi.org/10.21105/joss.03950.

2

https://doi.org/10.21105/joss.03950

Figure 1: Wall-time of the computational docking of all 1,615 FDA-approved drugs against 5WIU
using QVina2 over six CPU cores for a single-node setup with the specified number of CPU cores.
(Left) calculated speedup. (Right) wall time in minutes. Bars reflect mean ± standard deviation over
three runs.

To handle task distribution, pyscreener relies on the ray library (Moritz et al., 2018) for
distributed computation. For multithreaded docking software, pyscreener allows a user to
specify how many CPU cores to run each individual docking simulation over, running as many
docking simulations in parallel as possible for a given number of total CPU cores in the ray

cluster. To examine the scaling behavior of pyscreener, we docked all 1,615 FDA-approved
drugs into the active site of the D4 dopamine receptor (PDB ID 5WIU (Wang et al., 2017))
with QVina2 running over 6 CPU cores. We tested both single node hardware setups, scaling
the total number of CPU cores on one machine, and multi-node setups, scaling the total
number of machines. In the single-node case, pyscreener exhibited essentially perfect scaling
Figure 1 as we scaled the size of the ray cluster from 6 to 48 CPU cores running QVina over
6 CPU cores.

Figure 2: Wall-time of the computational docking of all 1,615 FDA-approved drugs against 5WIU
using QVina2 over six CPU cores for setups using multiple 48-core nodes with the total number of
specified CPU cores. (Left) calculated speedup. (Right) wall time in minutes. Bars reflect mean ±
standard deviation over three runs.

Graff, & Coley. (2022). pyscreener: A Python Wrapper for Computational Docking Software. Journal of Open Source Software, 7(71), 3950.
https://doi.org/10.21105/joss.03950.

3

https://doi.org/10.21105/joss.03950

In contrast, the multi-node setup exhibits less ideal scaling Figure 2 with a measured speedup
approximately 55% that of perfect scaling. We attribute this scaling behavior to hardware-
dependent network communication overhead. Distributing a sleep(5) function allocated 6
CPU cores per task (to mimic a fairly quick docking simulation) in parallel over differing
hardware setups led to an approximate 2.5% increase in wall-time relative to the single-node
setup each time the number of nodes in the setup was doubled while keeping the total number of
CPU cores the same. Such a trend is consistent with network communication being detrimental
to scaling behavior. This test also communicated the absolute minimum amount of data over
the network, as there were no function arguments or return values. When communicating
CalculationData objects (approximately 600 bytes in serialized form) over the network, as
in pyscreener, the drop increased to 6% for each doubling of the total number of nodes.
Minimizing the total size of CalculationData objects was therefore an explicit implementation
goal. Future development will seek to further reduce network communication overhead costs
to bring pyscreener scaling closer to ideal scaling.

Examples
To illustrate pyscreener, we consider docking benezene (SMILES string ”c1ccccc1”) against
5WIU with a docking box centered at (-18.2, 14.4, -16.1) with x-, y-, and z-radii (15.4, 13.9,
14.5). We may perform this docking using AutoDock Vina over 6 CPU cores via pyscreener

like so:

import pyscreener as ps

metadata = ps.build_metadata(”vina”)

virtual_screen = ps.virtual_screen(

”vina”,

receptors=[”5WIU.pdb”],

center=(-18.2, 14.4, -16.1),

size=(15.4, 13.9, 14.5),

metadata_template=metadata,

ncpu=6

)

scores = virtual_screen(”c1ccccc1”)

print(scores)

[-4.4]

Alternatively, we may dock many molecules by passing a List of SMILES strings to the
DockingVirtualScreen:

smis = [

”c1ccccc1”,

”O=C(Cc1ccccc1)NC1C(=O)N2C1SC(C2C(=O)O)(C)C”,

”C=CCN1CCC23C4C(=O)CCC2(C1CC5=C3C(=C(C=C5)O)O4)O”

]

scores = virtual_screen(smis)

print(scores.shape)

(3,)

By default, AutoDock Vina docks molecules using an --exhaustiveness value of 8, but we
may specify a higher number in the metadata:

metadata = ps.build_metadata(”vina”, dict(exhaustivness=32))

We may also utilize other docking engines in the AutoDock Vina family by specifying the
software for Vina-type metadata. Here, we use the accelerated optimization routine of QVina
for faster docking. Note that we also support software values of ”smina” (Koes et al., 2013)

Graff, & Coley. (2022). pyscreener: A Python Wrapper for Computational Docking Software. Journal of Open Source Software, 7(71), 3950.
https://doi.org/10.21105/joss.03950.

4

https://doi.org/10.21105/joss.03950

and ”psovina” (Ng et al., 2015) in addition to ”vina” (Trott & Olson, 2010) and ”qvina”

(Alhossary et al., 2015).

metadata = ps.build_metadata(”vina”, dict(software=”qvina”))

It is also possible to dock molecules using DOCK6 (Allen et al., 2015) in pyscreener. To do
this, we must first construct DOCK6 metadata and specify that we are creating a DOCK6
virtual screen (note that DOCK6 is not multithreaded and thus does not benefit from being
assigned multiple CPU cores per task):

metadata = ps.build_metadata(”dock”)

virtual_screen = ps.virtual_screen(

”dock”,

receptors=[”5WIU.pdb”],

center=(-18.2, 14.4, -16.1),

size=(15.4, 13.9, 14.5),

metadata_template=metadata

)

scores = virtual_screen(”c1ccccc1”)

print(scores)

[-12.35]

Acknowledgements
The authors thank Keir Adams and Wenhao Gao for providing feedback on the preparation
of this paper and the pyscreener code. The computations in this paper were run on the
FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at
Harvard University. The authors also acknowledge the MIT SuperCloud and Lincoln Laboratory
Supercomputing Center for providing HPC and consultation resources that have contributed
to the research results reported within this paper. This work was funded by the MIT-IBM
Watson AI Lab.

References
Alhossary, A., Handoko, S. D., Mu, Y., & Kwoh, C.-K. (2015). Fast, accurate, and reliable

molecular docking with QuickVina 2. Bioinformatics, 31(13), 2214–2216. https://doi.org/
10.1093/bioinformatics/btv082

Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T.,
Case, D. A., Kuntz, I. D., & Rizzo, R. C. (2015). DOCK 6: Impact of new features and
current docking performance. Journal of Computational Chemistry, 36(15), 1132–1156.
https://doi.org/10.1002/jcc.23905

Brown, N., Fiscato, M., Segler, M. H. S., & Vaucher, A. C. (2019). GuacaMol: Benchmarking
Models for de Novo Molecular Design. Journal of Chemical Information and Modeling,
59(3), 1096–1108. https://doi.org/10.1021/acs.jcim.8b00839

Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0:
New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical
Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

Elton, D. C., Boukouvalas, Z., Fuge, M. D., & Chung, P. W. (2019). Deep learning for molecular
design—a review of the state of the art. Molecular Systems Design & Engineering, 4(4),
828–849. https://doi.org/10.1039/C9ME00039A

Gorgulla, C., Boeszoermenyi, A., Wang, Z.-F., Fischer, P. D., Coote, P. W., Padmanabha
Das, K. M., Malets, Y. S., Radchenko, D. S., Moroz, Y. S., Scott, D. A., Fackeldey,

Graff, & Coley. (2022). pyscreener: A Python Wrapper for Computational Docking Software. Journal of Open Source Software, 7(71), 3950.
https://doi.org/10.21105/joss.03950.

5

https://doi.org/10.1093/bioinformatics/btv082
https://doi.org/10.1093/bioinformatics/btv082
https://doi.org/10.1002/jcc.23905
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1039/C9ME00039A
https://doi.org/10.21105/joss.03950

K., Hoffmann, M., Iavniuk, I., Wagner, G., & Arthanari, H. (2020). An open-source
drug discovery platform enables ultra-large virtual screens. Nature, 580(7805), 663–668.
https://doi.org/10.1038/s41586-020-2117-z

Graff, D. E., Shakhnovich, E. I., & Coley, C. W. (2021). Accelerating high-throughput
virtual screening through molecular pool-based active learning. Chemical Science, 12(22),
7866–7881. https://doi.org/10.1039/D0SC06805E

Koes, D. R., Baumgartner, M. P., & Camacho, C. J. (2013). Lessons Learned in Empirical
Scoring with smina from the CSAR 2011 Benchmarking Exercise. Journal of Chemical
Information and Modeling, 53(8), 1893–1904. https://doi.org/10.1021/ci300604z

Li, Y., Zhang, L., & Liu, Z. (2018). Multi-objective de novo drug design with conditional
graph generative model. Journal of Cheminformatics, 10(1), 33. https://doi.org/10.1186/
s13321-018-0287-6

Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., O’Meara, M. J., Che, T.,
Algaa, E., Tolmachova, K., Tolmachev, A. A., Shoichet, B. K., Roth, B. L., & Irwin, J. J.
(2019). Ultra-large library docking for discovering new chemotypes. Nature, 566(7743),
224–229. https://doi.org/10.1038/s41586-019-0917-9

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z.,
Paul, W., Jordan, M. I., & Stoica, I. (2018). Ray: A Distributed Framework for Emerging
AI Applications. arXiv:1712.05889 [Cs, Stat]. http://arxiv.org/abs/1712.05889

Ng, M. C. K., Fong, S., & Siu, S. W. I. (2015). PSOVina: The hybrid particle swarm optimiza-
tion algorithm for protein–ligand docking. Journal of Bioinformatics and Computational
Biology, 13(03), 1541007. https://doi.org/10.1142/S0219720015410073

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R.
(2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33.
https://doi.org/10.1186/1758-2946-3-33

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and multithreading. Journal of
Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

Wang, S., Wacker, D., Levit, A., Che, T., Betz, R. M., McCorvy, J. D., Venkatakrishnan, A. J.,
Huang, X.-P., Dror, R. O., Shoichet, B. K., & Roth, B. L. (2017). D4 dopamine receptor
high-resolution structures enable the discovery of selective agonists. Science, 358(6361),
381–386. https://doi.org/10.1126/science.aan5468

Graff, & Coley. (2022). pyscreener: A Python Wrapper for Computational Docking Software. Journal of Open Source Software, 7(71), 3950.
https://doi.org/10.21105/joss.03950.

6

https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.1021/ci300604z
https://doi.org/10.1186/s13321-018-0287-6
https://doi.org/10.1186/s13321-018-0287-6
https://doi.org/10.1038/s41586-019-0917-9
http://arxiv.org/abs/1712.05889
https://doi.org/10.1142/S0219720015410073
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1126/science.aan5468
https://doi.org/10.21105/joss.03950

	Summary
	Statement of Need
	Implementation and Performance
	Examples
	Acknowledgements
	References

