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Summary
In several physical and environmental processes that concern multiphase flows, biological
systems, and geophysical phenomena, important physical processes occur along thin physical
interfaces. These processes include effects that may alter the interface’s position or topology
over time creating a moving interface, which complicates traditional modeling techniques.
Moving interface problems thus require advanced numerical tools with specific treatment of
the interface and the simultaneous ability to implement complex physical effects, which this
work seeks to create solutions for.

Statement of Need
In this work, we present Dune-MMesh that is tailored for numerical applications with moving
physical interfaces. Dune-MMesh is an implementation of the well-developed Dune (Bastian et
al., 2021) grid interface and is well-suited for the numerical discretization of partial differential
equations (PDEs). The package wraps two and three dimensional CGAL triangulations (The
CGAL Project, 2020) in high-level objects like intersections of grid entities, index and id sets
and geometry transformations and exports a predefined set of facets as a separate interface
grid. In two dimensions, the arbitrary movement of vertices is enhanced with a re-meshing
algorithm that implements non-hierarchical adaptation procedures. Besides the adaptation
of the triangulation, Dune-MMesh provides the necessary data structures to adapt discrete
functions defined on the bulk grid or the interface. This adaptation approach complements
existing grid implementations within the Dune framework that strictly rely on hierarchical
adaptation. Various examples in Python have been implemented based on the discretization
module Dune-Fem (Dedner et al., 2020) that demonstrate the versatile applicability of Dune-
MMesh. Due to the ability to handle custom PDEs in their weak from written in Unified Form
Language (UFL) and the mesh adaptation capabilities, we believe Dune-MMesh provides a
useful tool for solving mixed-dimensional PDEs on moving interfaces that arise from various
fields of modelling.

CGAL Wrapper
In its core, Dune-MMesh is a wrapper of CGAL Triangulations in Rd, d = 2, 3, that implements
the Dune grid interface. A CGAL triangulation is a set of simplicial cells and vertices where each
cell gives access to its d+ 1 incident vertices and cells. Facets are not explicitly represented: a
facet is given by the pair of a cell c and an index i and has two implicit representations. For
d = 3, edges are represented by triples of a cell c and two indices i and j that indicate the two
vertices of the edge.
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Figure 1: CGAL representation of cells and differing Dune numbering in brackets. The vertex
numbering is maintained, facets are renumbered, and the edges of tetrahedrons are equipped with
indices according to the Dune reference element numbering.

In order to match the Dune grid reference cell numbering we apply an index mapping, cf. Figure
1. Here, the edges of tetrahedrons are equipped with indices according to the Dune reference
element numbering. Dune intersections, i.e., intersections of mesh entities of codimension
0 with a neighboring element or with the domain boundary, can directly be represented by
CGAL’s cell-index representations of facets which are already equipped with an orientation.
The index and id sets of the Dune grid interface are realized by consecutive numbering of
cells and vertices. Various iterators of CGAL triangulations can directly be used to construct
the Dune grid range generators. Additional (non-standard Dune) iterators have been added,
e.g. iterating over incident cells of a vertex.

Interface Grid
Consider a domain Ω ⊂ Rd, d ∈ {2, 3}, that includes a (d− 1)-dimensional interface Γ ⊂ Ω,
as depicted in Figure 2. We assume the domain is triangulated conforming to the interface Γ.

Figure 2: A domain with a T-shaped interface and an example for a conforming triangulation.

Dune-MMesh features a second implementation of the Dune grid interface that represents the
interface triangulation. Here, a codim-0 entity of the interface grid is represented by a CGAL
cell-index pair. The interface grid also supports networks, cf. Figure 3, and it is possible to
convert bulk intersections to interface grid cells and vice versa.
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Figure 3: Outer normals at junctions.

Moving Mesh
Most interface driven-problems have time-dependent interfaces Γ = Γ(t). Therefore, Dune-
MMesh features capabilities of moving and re-meshing in spatial dimension two. Here we
follow the approach of moving the interface edges and adapt the mesh next to the interface.

Moving Vertices

We assume that movement is given by a shift of interface vertices (or all grid vertices), cf. Figure
4 (left).

Figure 4: Left: Moving the interface is performed by shifting vertices. The blue shift vectors tranform
the gray two-dimensional triangulation into the black one. Right: Marking cells for refinement (green)
or coarsening (red).

To prevent degeneration of the triangulation, i.e. cells have non-positive volume, Dune-MMesh
is equipped with re-meshing routines that will be described in the subsequent.

Adaptation

Adaptation in Dune is usually hierarchical by definition and the adaptation procedure is
performed in two stages:

1. Mark: Grid cells are marked for coarsening or refinement.
2. Adapt: The cells are modified due to their markers and discrete functions are restricted

or prolongated.

In Dune-MMesh, due to the moving mesh, non-hierarchic adaptation is unavoidable. However,
we will try to follow the general Dune approach and separate the adaptation into two stages.

Stage 1: Mark
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Dune-MMesh provides utility functions to mark cells either in expectation of a movement of
vertices or regarding to their current geometrical properties, cf. Figure 4 (right). For instance,
when moving the interface would cause a cell to get a negative volume, we mark this cell
for coarsening (marked red in Figure 4). Similarly, we use the edge length as indicator for
coarsening or refinement (marked green). However, one can also use a proprietary procedure
marking cells manually, or one can insert and remove vertices directly.

Stage 2: Adapt

After marking cells an adapt routine performs the actual adaptation process. The adaptation
is performed by insertion and removal of points.

Figure 5: Left: Inserting and removing points. Right: Connected components.

In each cell that is marked for refinement we bisect the longest edge, cf. Figure 5 (left). In all
cells marked for coarsening, the least important vertex is removed. When a vertex is removed,
the resulting star-shaped hole is re-triangulated with respect to the interface.

For the purpose of projection, we introduce connected components, see Figure 5 (right), and
implement a generalized callback adaptation in Dune-Fem.

Figure 6: Non-hierarchic projection with cut-set triangulation.

A conservative projection of discrete functions can be performed by intermediate prolongation
and restriction on the cut-set cells, cf. Figure 6. We use a similar concept on the interface grid
that enables projection of discrete functions on the interface.

Trace and skeleton
Dune-MMesh exports both traces of bulk discrete functions on the interface and skeleton
representations of interface discrete functions on bulk edges.
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The trace is a discrete function on the interface grid that evaluates a given bulk discrete
function. It can be restricted to both sides of the interface and might be used in UFL forms.

Analogously, the skeleton function is a discrete function that returns the interface’s discrete
function values on interface bulk facets.

Both trace and skeleton can be used to couple bulk and interface problems. Such couplings
occur, for example, in mixed-dimensional PDEs.

Coupled solve
We provide two helper functions to solve bulk and interface schemes in a coupled way.

The first method iterativeSolve uses an iterative solution strategy which alternately solves
both schemes until the two norm between two iterates is below an objective tolerance.

The second helper function monolithicSolve solves bulk and interface scheme coupled
monolithically. A newton method is implemented assembling the underlying jacobian matrix
where the coupling jacobian blocks are evaluated by finite differences.

Examples
We implemented a few examples to display how Dune-MMesh can be used in different
contexts. All examples can be found in dune-mmesh/doc/examples as IPython notebooks.
Some numerical results of these examples are visualized in Figure 7, Figure 8 and Figure 9.

Figure 7: Finite volume moving mesh method to track a discontinuity (Chalons et al., 2018)

Figure 8: Mixed-dimensional model of poro-elasticity with a T-shaped fracture.
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Figure 9: Two-phase Navier-Stokes equation (Gerstenberger et al., 2020).
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