
Castor: A C++ library to code “à la Matlab”
Matthieu Aussal∗1, Marc Bakry†1, and Laurent Series‡2

1 Ecole Polytechnique (CMAP), INRIA, Institut Polytechnique Paris, Route de Saclay 91128,
Palaiseau, France 2 Ecole Polytechnique (CMAP), Institut Polytechnique Paris, Route de Saclay
91128, Palaiseau, France

DOI: 10.21105/joss.03965

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @mkitti
• @pitsianis

Submitted: 23 November 2021
Published: 16 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
The objective of the Castor framework is to propose high-level semantics, inspired by the
Matlab language, allowing fast software prototyping in a low-level compiled language. It is
nothing more than a matrix management layer using the tools of the standard C++ library
(C++14 and later), in different storage formats (full, sparse and hierarchical). Linear algebra
operations are built over the BLAS API and graphic rendering is performed in the VTK
framework. The Castor framework is provided as an open source software under the LGPL
3.0, compiled and validated with clang and gcc.

Statement of need
Matlab is a software used worldwide in numerical prototyping, due to its particularly user-
friendly semantics and its certified toolboxes. However, many use cases do not allow codes in
Matlab format, for example multi-platform portability issues, proprieraty licensing and more
generally code interfacing. To start meeting these needs, a header-only template library for
matrix management has been developed, based on the standard C++14 and later library, by
encapsulating the std::vector class. Many tools and algorithms are provided to simplify the
development of prototypes:

• dense, sparse and hierarchical matrices manipulations,
• linear algebra computations (Anderson et al., 1999),
• graphical representations (Schroeder et al., 2000).

This high-level semantic/low-level language coupling makes it possible to gain efficiency in the
developpement, while ensuring performance for applications. In addition, direct access to data
structures allows users to optimize the most critical parts of their code. Finally, a complete
documentation is available, as well as continuous integration unit tests. All of this makes it
possible to meet the needs of teaching (notebooks using a C++ interpreter such as Cling),
academic research and industrial applications at the same time.

State of the field
For a developer accustomed to the Matlab language, it is natural to turn to prototyping tools
such as Numpy or Julia, to produce open-source codes. Indeed, these tools today offer similar
semantics and performance, with well-established user communities. To illustrate this similarity,
the following codes perform the same tasks, with one implementation in Matlab (MATLAB,
2010) (left) and another in Julia (Bezanson et al., 2012) (right) :

∗matthieu.aussal@polytechnique.edu
†marc.bakry@polytechnique.edu
‡laurent.series@polytechnique.edu

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

1

https://doi.org/10.21105/joss.03965
https://github.com/openjournals/joss-reviews/issues/3965
https://github.com/leprojetcastor/castor
https://doi.org/10.5281/zenodo.6360120
https://avesis.istanbul.edu.tr/mhsatman
https://github.com/mkitti
https://github.com/pitsianis
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

Matlab Julia
using LinearAlgebra

tic function test()

M = [1 2 3 ; M = [1 2 3 ;

4 5 6 ; 4 5 6 ;

7 8 9 ; 7 8 9 ;

10 11 12]; 10 11 12];

disp(M); display(M);

M = (M - 1) .* ... M = (M .- 1) .*

eye(size(M)); Matrix(I,size(M));

M(1,1) = -1; M[1,1] = -1;

M([2,3],1) = -1; M[[2 3],1] .= -1;

M(4,:) = -1; M[4,:] .= -1;

disp(M); display(M);

disp(sum(M,2)); display(sum(M,dims=2));

disp(abs(M)); display(abs.(M))

disp(sort(M,1)); display(sort(M,dims=1));

disp(M*M'); display(M*M');

end

toc @time test();

disp(”done.”); display(”done.”);

Despite the many advantages that these languages have and their high popularity, many codes
are still developed natively in Fortran, C, and C++, for practical or historical reasons. Even if
there are tools to automatically generate C/C++ code from a high-level language (as Matlab
Coder), this work is often done manually by specialists. To find high-level semantics in native
C++, we can turn to libraries like Eigen (Guennebaud et al., 2010), which offers a matrix API
and efficient algebra tools. However, as the comparison below shows, the transcription from a
Matlab code to an Eigen-based C++ code is not immediate:

#include <iostream>

#include <chrono>

#include <eigen-3.4.0/Eigen/Dense>

using namespace std::chrono;

using namespace Eigen;

int main()

{

auto tic = high_resolution_clock::now();

MatrixXd M(4,3);

M « 1, 2, 3,

4, 5, 6,

7, 8, 9,

10, 11, 12;

std::cout « M « std::endl;

M.array() -= 1;

M.array() *= MatrixXd::Identity(M.rows(),M.cols()).array();

M(0,0) = -1;

M.block<2,1>(1,0) = -MatrixXd::Ones(2,1);

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

2

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

M.row(3) = -MatrixXd::Ones(1,3);

std::cout « M « std::endl;

std::cout « M.rowwise().sum() « std::endl;

std::cout « M.array().abs() « std::endl;

MatrixXd Ms = M;

for(auto col : Ms.colwise())

{

std::sort(col.begin(), col.end());

}

std::cout « Ms « std::endl;

std::cout « M * M.transpose() « std::endl;

auto toc = high_resolution_clock::now();

auto duration = duration_cast<microseconds>(toc - tic);

std::cout « ”Elapsed time: ” « duration.count()*1e-6 « std::endl;

std::cout « ”done.” « std::endl;

return 0;

}

To complete this example, other references are available on this link. This is why all the features
of the Castor library have been designed and developed so that the semantics at user level are
as close to Matlab as what C++ allows. Moreover, to gain in portability, the manipulations of
full matrices and the main algorithms depend only on the standard library which is available
on the most majority of operating systems (MacOS, Linux, Windows, Android, etc.). Only
advanced linear algebra tools require an external BLAS / LAPACK API, as well as graphical
visualization functionality (VTK). The example below illustrates this goal:

Matlab Castor
#include ”castor/matrix.hpp”

using namespace castor;

int main (int argc, char* argv[

])

{

tic tic();

M = [1 2 3 ; M = {{ 1, 2, 3},

4 5 6 ; { 4, 5, 6},

7 8 9 ; { 7, 8, 9},

10 11 12]; {10, 11, 12}};

disp(M); disp(M);

M = (M - 1) .* eye(size(M)); M = (M - 1) * eye(size(M));

M(1,1) = -1; M(0,0) = -1;

M([2,3],1) = -1; M({1,2},0) = -1;

M(4,:) = -1; M(3,col(M)) = -1;

disp(M); disp(M);

disp(sum(M,2)); disp(sum(M,2));

disp(abs(M)); disp(abs(M));

disp(sort(M,1)); disp(sort(M,1));

disp(M*M'); disp(mtimes(M,transpose(M)));

toc toc();

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

3

https://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

Matlab Castor
disp(”done.”); disp(”done.”);

return 0;

}

Note: It is important to specify that the Castor library is far from offering today all the
functionalities offered by Matlab and its many toolboxes.

Dense Matrix
The dense matrix part of the Castor framework implements its own templatized class matrix<

T> in matrix.hpp, where T can be fundamental types of C++ as well as std::complex. This
class is built over a std::vector<T> which holds the values (ISO/IEC, 2014). Note that the
element of a matrix is stored in row-major order and that a vector is considered as a 1× n or
n× 1 matrix.

The class matrix<T> provides many useful functions and operators such as:

• builders which can be used to initialize all coefficients (zeros, ones, eye, etc.),
• standard algorithms over data stored in matrices (norm, max, sort, argsort, etc.),
• mathematical functions which can be applied element-wise (cos, sqrt, conj, etc.),
• matrix manipulations like concatenate matrices in all dimensions, find the non-zero

elements or transpose them, reshape size, etc.,
• standard C++ operators which have been overloaded and work element-wise (+,*,!,&

&,etc.),
• values accessors and matrix views with linear and bi-linear indexing,
• elements of linear algebra, such as the matrix product (mtimes or tgemm) and linear

system resolution (multi-right-hand-side gmres),
• many other tools to display elements (<<, disp), save and load elements from file (ASCII

or binary), etc.

The API provides more than a hundred functions and is designed such that it should feel like using
Matlab. For advanced users, direct access to the data stored in the std::vector<T> enables
all or part of an algorithm to be optimized in native C++.

This example displays the sum of two matrices with implicit cast :

#include <iostream>

#include ”castor/matrix.hpp”

using namespace castor;

int main(int argc, char* argv[])

{

matrix<float> A = {{ 1.0, 2.0, 3.0, 4.0},

{ 5.0, 6.0, 7.0, 8.0},

{ 9.0, 10.0, 11.0, 12.0}};

matrix<double> B = eye(3,4);

auto C = A + B;

disp(C);

return 0;

}

Matrix 3x4 of type 'd' (96 B):

2.00000 2.00000 3.00000 4.00000

5.00000 7.00000 7.00000 8.00000

9.00000 10.00000 12.00000 12.00000

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

4

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

Linear Algebra
The linear algebra part of the framework, implemented in linalg.hpp, provides a set of useful
functions to perform linear algebra computations by linking to optimized implementations of
the BLAS and LAPACK standards (Anderson et al., 1999) (OpenBLAS, oneAPI MKL, etc.).

The BLAS part is a straightforward overlay of the C-BLAS type III API, which is compatible
with row-major ordering. This is achieved by a template specialization of the tgemm function,
which allows optimized implementations to take control of the computation using sgemm, dgemm,
cgemm and zgemm. Thanks to this interface, naive implementations proposed in matrix.hpp for
dense matrix-products mtimes and tgemm may be improved in term of performance, especially
for large matrices.

The LAPACK part is a direct overlay over the Fortran LAPACK API, which uses a column
ordering storage convention. This interface brings new high-level functionalities, such as a
linear solver (linsolve), matrix inversion (inv, pinv), factorizations (qr, lu), the search
for eigen or singular values decompositions (eig ,svd), aca compression (aca), etc. It uses
templatized low-level functions following the naming convention close to the LAPACK one
(like tgesdd, tgeqrf, etc.).

This example displays the product of A and A−1 :

#include <iostream>

#include ”castor/matrix.hpp”

#include ”castor/linalg.hpp”

using namespace castor;

int main (int argc, char* argv[])

{

matrix<> A = rand(4);

matrix<> Am1 = inv(A);

disp(mtimes(A,Am1));

return 0;

}

Matrix 4x4 of type 'd' (128 B):

1.0000e+00 1.0408e-16 -2.7756e-17 -5.5511e-17

0 1.0000e+00 -5.5511e-17 1.1102e-16

0 -2.2204e-16 1.0000e+00 -1.1102e-16

-2.7756e-17 0 0 1.0000e+00

Note: The backslash operator (\) not being available, the linsolve function allows to solve
linear systems with:

• LU decomposition with partial pivoting and row interchanges for square matrices ([sdcz
]gesv),

• QR or LQ factorization for overdetermined or underdetermined linear systems ([sdcz]ge
ls).

In addition, an iterative multi-right-hand-side solver gmres is available in matrix.hpp, without
dependency on BLAS and LAPACK.

2D/3D Visualization
The graphic rendering part, provided by graphics.hpp, features 2D/3D customizable plotting
and basic mesh generation. It is based on the well-known VTK library (Schroeder et al., 2000).
Here again, the approach tries to get as close as possible to Matlab semantics.

First, the user creates a figure, which is a dynamic container of data to display. The figure

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

5

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

class is composed of a vtkContextView class, providing a view with a default interactor style,
renderer, etc. Then, graphic representations can be added to the figure, using functions like
plot, imagesc, plot3, mesh, etc. Options are available to customize the display of the results,
such as the plotting style, legend, colorbar and others basic stuff. Finally, the drawnow function
must be called to display all defined figures. The latters are displayed and manipulated in
independent windows.

In addition, graphics exports are available in different compression formats (png,jpg, tiff,
etc.), as well as video rendering (ogg).

This example shows a basic 2D plotting of a sine function (Figure 1):

#include ”castor/matrix.hpp”

#include ”castor/graphics.hpp”

using namespace castor;

int main (int argc, char* argv[])

{

matrix<> X = linspace(0,10,100);

figure fig;

plot(fig,X,sin(X),{”r-+”},{”sin(x)”});

plot(fig,X,cos(X),{”bx”},{”cos(x)”});

drawnow(fig);

return 0;

}

Figure 1: Basic 2D plotting from Castor (using VTK).

Sparse matrices
Some matrices have sparse structures, with many (many) zeros that do not need to be stored
(Tewarson, 1973). There are adapted storage formats for this type of structure (LIL, COO,
CSR, etc.), the most natural being to store the indices of rows and columns for each non-zero
value, as a list of triplet {i, j, v}. For the Castor framework, a dedicated template class to
this kind of matrix has been developed (see smatrix.hpp). The storage format is based on

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

6

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

a row major sorted linear indexing. Only non-zero values and their sorted linear indices are
stored in a list of pairs {v, l}: for a m × n matrix, the following bijection is used to switch
with the common bilinear indexation:

{i, j} → l = i · n+ j,

l → {i = l

n
; j = i mod n}.

Accessors to all the elements are provided so that sparse matrices can be manipulated in a similar
way as the dense matrices. This operation is performed by dichotomy with a convergence in
log2(nnz), where nnz is the number of non-zero elements. Just like dense matrices, numerical
values are stored in a templatized std::vector<T>. For convenience, we provide classical
builders (sparse, speye, spdiags, etc.), standard C++ operators overloading, views, display
functions (disp, spy) and some linear algebra tools (transpose, mtimes, gmres, etc.).

This example displays the sum of two sparse matrices, with implicit cast and sparse to dense
conversion :

#include <iostream>

#include ”castor/smatrix.hpp”

using namespace castor;

int main (int argc, char* argv[])

{

smatrix<float> As = {{0.0, 0.0, 0.0},

{5.0, 0.0, 7.0}};

As(0,1) = 2.0;

smatrix<double> Bs = speye(2,3);

disp(As);

disp(As(0,1)); // bilinear accessor

disp(As(4)); // linear accessor

disp(Bs);

disp(full(As+Bs));

return 0;

}

Sparse matrix 2x3 of type 'f' with 3 elements (12 B):

(0,1) 2

(1,0) 5

(1,2) 7

2

0

Sparse matrix 2x3 of type 'd' with 2 elements (16 B):

(0,0) 1

(1,1) 1

Matrix 2x3 of type 'd' (48 B):

1.00000 2.00000 0

5.00000 1.00000 7.00000

Hierarchical matrices
To widen the field of applications, the H-matrix format, so-called hierachical matrices (Hack-
busch, 1999), have been added in hmatrix.hpp. They are specially designed for matrices with
localized rank defaults. It allows a fully-populated matrix to be assembled and stored in a lighter
format by compressing some parts of the original dense matrix using a low-rank representation
(Rjasanow, 2002). They are constructed by binary tree subdivisions in a recursive way, with a

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

7

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

parallel assembly of the compressed and full leaves (using the OpenMP standard). This format
features a complete algebra, from elementary operations to matrix inversion. An example is
given in the application section that follows.

Application with a FEM/BEM simulation
As an application example, an acoustical scattering simulation was carried out using a boundary
element method (BEM) tool, implemented with the Castor framework (see the fembem
package (Aussal & Bakry, 2021)). We consider a smooth n-oriented surface Γ of some object
Ω, illuminated by an incident plane wave ui with wave-number k. The scattered field u satisfies
the Helmholtz equation in Ω, Neumann boundary conditions (sound-hard) and the Sommerfeld
radiation condition:

−(∆u+ k2u) = 0

−∂nui = 0

lim
r→+∞

r (∂ru− iku) = 0

The scattered field u satisfies the integral representation (Neumann interior extension, see
(Terrasse & Abboud, 2013)):

u(x) = −
(
1

2
µ(x) +

∫
Γ

∂ny
G(x, y)µ(y)dy

)
∀x ∈ Γ+, (1)

for some density µ, with the Green kernel G(x, y) = eik|x−y|

4π|x− y|
. Using the boundary conditions

we obtain :

−Hµ(x) = −∂nui(x) ∀x ∈ Γ, (2)

where the hypersingular operator H is defined by:

Hµ(x) =
∫
Γ

∂nx
∂ny

G(x, y)µ(y)dy. (3)

The operator H is assembled using a P1 finite element discretization on a triangular mesh of the
surface Γ, stored using dense matrices (matrix.hpp) or hierarchical matrices (hmatrix.hpp).

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

8

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

Figure 2: Resonance mode at 8kHz of the human pinna (BEM with H-Matrix).

Finally, using all the tools provided by Castor to write and solve these equations, we are able
to efficiently compute the acoustic diffraction of a harmonic plane wave at 8kHz, on a human
head mesh (Jin et al., 2013). As shown in Figure 2, the simulation result highlights the role
of the auditory pavilion as a resonator, modifying the timbre of a sound source to allow a
listener’s brain to precisely locate its direction.

#include <castor/matrix.hpp>

#include <castor/smatrix.hpp>

#include <castor/hmatrix.hpp>

#include <castor/linalg.hpp>

#include <castor/graphics.hpp>

#include ”fem.hpp”

#include ”bem.hpp”

using namespace castor;

int main (int argc, char* argv[])

{

// Load meshes

matrix<double> Svtx;

matrix<size_t> Stri;

std::tie(Stri,Svtx) = triread(”./”,”Head03_04kHz.ply”);

// Graphical representation

figure fig;

trimesh(fig,Stri,Svtx);

// Parameters

matrix<double> U = {0,0,-1};

double f = 2000;

double k = 2*M_PI*f/340;

float tol = 1e-3;

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

9

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

// FEM and mass matrix, sparse storage

tic();

femdata<double> v(Stri,Svtx,lagrangeP1,3);

femdata<double> u(Stri,Svtx,lagrangeP1,3);

auto Id = mass<std::complex<double»(v);

toc();

// Left hand side '-H', equation (3), H-Matrix storage

tic();

auto LHSfct = [&v,&u,&k](matrix<std::size_t> Ix, matrix<std::size_t> Iy)

{

return -hypersingular<std::complex<double»(v,u,k,Ix,Iy);

};

hmatrix<std::complex<double» LHS(v.dof(),u.dof(),tol,LHSfct);

toc();

disp(LHS);

// Right hand side '-dnUi', equation (2), full storage

auto B = - rightHandSide<std::complex<double»(v,dnPWsource,U,k);

// Solve '-H = -dnUi', equation (2), H-matrix preconditionner

// associated to iterative solver

hmatrix<std::complex<double» Lh,Uh;

tic();

std::tie(Lh,Uh) = lu(LHS,1e-1);

toc();

disp(Lh);

disp(Uh);

auto mu = gmres(LHS,B,tol,100,Lh,Uh);

// Boundary radiation, equation (1)

tic();

auto Dbndfct = [&v,&u,&k,&Id](matrix<std::size_t> Ix, matrix<std::size_t> Iy)

{

return 0.5*eval(Id(Ix,Iy)) + doubleLayer<std::complex<double»(v,u,k,Ix,Iy);

};

hmatrix<std::complex<double» Dbnd(v.dof(),u.dof(),tol,Dbndfct);

matrix<std::complex<double» Pbnd = mtimes(Dbnd,mu);

toc();

Pbnd = - gmres(Id,Pbnd,tol,100) + planeWave(v.dof(),U,k);

// Graphical representation

figure fig2;

trimesh(fig2,Stri,Svtx,abs(Pbnd));

// Export in .vtk file

triwrite(”./”,”head.vtk”,Stri,Svtx,real(Pbnd));

// Plot

drawnow(fig);

disp(”done !”);

return 0;

}

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

10

https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

Acknowledgements
We thank Houssem Haddar for his precious help.

References
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,

Greenbaum, A., Hammarling, S., McKenney, A., & Sorensen, D. (1999). LAPACK Users’
guide (Third). Society for Industrial and Applied Mathematics. ISBN: 0-89871-447-8

Aussal, M., & Bakry, M. (2021). https://gitlab.labos.polytechnique.fr/leprojetcastor/fembem

Bezanson, J., Karpinski, S., Shah, V. B., & Edelman, A. (2012). Julia: A fast dynamic
language for technical computing. arXiv Preprint arXiv:1209.5145.

Guennebaud, G., Jacob, B., & al., et. (2010). Eigen v3. http://eigen.tuxfamily.org.

Hackbusch, W. (1999). A sparse matrix arithmetic based on H-matrices. Part 1: Introduction
to H-matrices. Computing, 62(2), 89–108.

ISO/IEC. (2014). International standard ISO/IEC 14882:2014(e) – Programming language
C++. Geneva, Switzerland: International Organization for Standardization.

Jin, C. T., Guillon, P., Epain, N., Zolfaghari, R., van Schaik, A., Tew, A. I., & Thorpe, J.
(2013). Creating the Sydney York morphological and acoustic recordings of ears database.
IEEE Transactions on Multimedia, 16(1), 37-46. https://doi.org/10.1109/icme.2012.93

MATLAB. (2010). Version 7.10.0 (R2010a). The MathWorks Inc.

Rjasanow, S. (2002). Adaptive cross approximation of dense matrices. Int. Association
Boundary Element Methods Conf., IABEM (Pp. 28-30).

Schroeder, W. J., Avila, L. S., & Hoffman, W. (2000). Visualizing with VTK: A tutorial. IEEE
Computer Graphics and Applications, 20(5), 20-27. https://doi.org/10.1109/38.865875

Terrasse, I., & Abboud, T. (2013). Modélisation des phénomènes de propagation d’ondes.
École Polytechnique.

Tewarson, R. P. (1973). Sparse matrices. New York: Academic Press, Vol. 69.

Aussal et al. (2022). Castor: A C++ library to code “à la Matlab.” Journal of Open Source Software, 7(71), 3965. https://doi.org/10.21105/
joss.03965.

11

https://gitlab.labos.polytechnique.fr/leprojetcastor/fembem
https://doi.org/10.1109/icme.2012.93
https://doi.org/10.1109/38.865875
https://doi.org/10.21105/joss.03965
https://doi.org/10.21105/joss.03965

	Summary
	Statement of need
	State of the field
	Dense Matrix
	Linear Algebra
	2D/3D Visualization
	Sparse matrices
	Hierarchical matrices
	Application with a FEM/BEM simulation
	Acknowledgements
	References

