
NeuralFieldEq.jl: A flexible solver to compute Neural Field
Equations in several scenarios
Tiago Sequeira ∗1

1 Instituto Superior Técnico - University of Lisbon
DOI: 10.21105/joss.03974

Software
• Review
• Repository
• Archive

Editor: Jarvist Moore Frost
Reviewers:

• @rougier
• @gdetor

Submitted: 02 November 2021
Published: 04 July 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
In their works, Wilson & Cowan (1972) presented a model, later developed by Amari (1977),
named Neural Field Equations (NFE). Bressloff (2011) and Coombes (2005), summarise the
main theoretical results and enumerate a wide variety of neurological phenomena that can be
described by these equations. Such as working memory (Laing et al., 2002), travelling waves,
etc. One of the improvements to consider in the simpler NFE, is to take into account the time
taken by the stimulus to travel from neurons at different points. This leads to the delayed
equation,

α
∂V

∂t
(x, t) = I (x, t)− V (x, t) +

∫
Ω

K (||x − y||2)S
[
V (y, t− d (x, y))

]
dky, (1)

with Ω = [−L
2 ,

L
2]

k with k = 1, 2; V (x, t) is the membrane potential at point x ∈ Ω at time t;
I(x, t) is the external input applied to the neural field; K (||x − y||2) is the average strength
of connectivity between neurons located at points x and y in an isotropic and homogeneous
neural field. When the coupling is positive (resp. negative) the synapses are excitatory (resp.
inhibitory); S(V) is the firing rate function, which converts the potential to the respective
firing rate result; α is the constant decay rate; d (x, y) = ||x−y||2

v represents the delay, which is
assumed to only depend on the distance, between points x and y, and on the transmission
speed v. If v is sufficiently high, d can be neglected and Equation 1 is reduced to a non-delayed
NFE, d = 0. Moreover, V satisfies the initial condition V (x, t0) = V0(x, t0), t0 ∈ [−τmax, 0],
wherein τmax is the maximum delay correspondent to Ω.

Kuehn & G Riedler (2014) considered the stochasticity inherent to neuronal interactions,
and presented a spectral method to stochastic non-delayed NFE with additive white noise
and spatial correlation. So, considering a finite speed in this scenario, the following delayed
stochastic NFE can be written,

αdV (x, t) =
[
I (x, t)− V (x, t) +

∫
Ω

K (||x − y||2)S
[
V (y, t− d (x, y))

]
d2y

]
dt+

εdW (x, t) , (2)

whereas ε is the additive noise level and W is a Q-Wiener process. With V (x, t0) =
V0(x, t0), t0 ∈ [−τmax, 0].

Statement of need
Studies suggest that Neural Field Equations (NFE) can be applied to cognitive robotics. The
architecture of autonomous robots, able to interact with other agents in solving a mutual task,
is strongly inspired by the processing principles and the neuronal circuitry in the primate brain

∗first author

Sequeira. (2022). NeuralFieldEq.jl: A flexible solver to compute Neural Field Equations in several scenarios. Journal of Open Source Software,
7(75), 3974. https://doi.org/10.21105/joss.03974.

1

https://orcid.org/0000-0001-8579-3676
https://doi.org/10.21105/joss.03974
https://github.com/openjournals/joss-reviews/issues/3974
https://github.com/tiagoseq/NeuralFieldEq.jl
https://doi.org/10.5281/zenodo.6226695
http://jarvist.github.io/
https://orcid.org/0000-0003-1938-4430
https://github.com/rougier
https://github.com/gdetor
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03974

(Erlhagen & Bicho, 2006). Furthermore, recent efforts made by Ferreira et al. (2020) show the
necessity of an efficient numerical method to computing NFE in real time, in order to endow
robots with working memory mechanisms.

The common numerical method for Neural Field Equations use classical quadrature, which has
poorly scaling O

(
N2k

)
complexity, where k is the dimension of the domain. In the case of non-

delayed equations, one can directly apply Fast Fourier Transforms (FFT), O
(
Nk logk N

)
, to

compute the numerical solution. However, when v < ∞, this is no longer the case. Motivated
by this, Hutt & P Rougier (2013) proposed a novel numerical scheme, where the authors
rewrote the integral so that the delayed NFE could be numerically approximated using FFT
techniques.

NeuralFieldEq.jl aims to enhance the method derived in (Hutt & P Rougier, 2013) and
implemented by Nichols & Hutt (2015), and adapt to the stochastic scenario presented by
Kuehn & G Riedler (2014). The solver uses Real Fast Fourier Transforms (RFFT) provided by
Frigo & Johnson (2005), reducing the overall computation. The software package is written
in the Julia (Bezanson et al., 2015) programming language, which can be performant like
low-level languages without sacrificing the usual features of high-level languages. Furthermore,
its built to handle NFE in the scenarios aforementioned and their respective combinations,
i.e. non-delayed or delayed equations in deterministic or stochastic 1D or 2D neural fields.

Sequeira & Lima (2022) exploited this versatility and efficiency to study stochastic neural fields
where low transmission velocities play an important role, facilitating the exploration of new
ideas and experiments.

Package usage
1. Specify parameters, initial condition and functions by using Input1D or Input2D:

• The functions are defined as External input: I(x,t) or I(x,y,t); Kernel: K(x) or
K(x,y); And Firing rate: S(V).

• The initial condition can be constant or a function. In the latter case, must be
defined as V0(x) or V0(x,y);

• The parameters: a-α, v-velocity, L-domain length, N-number of spatial nodes,
T-time span and n-number of time steps;

• The inputs must be wrapped in the following order: nf = Input1D(a,v,V0,L,N,T,n,I,K,S);
• Remark: Currently, to obtain the non-delayed problem, the velocity must satisfy:

v > L√
2∆t

in 2D and v > L
2∆t in 1D.

2. Prepare the NFE through function probNFE. Example: NFE = probNFE(nf);

3. Solve the equation using solveNFE:

• Declare an array, t, with the time instants where the solution is saved;
• Compute deterministic equation: Vdet = solveNFE(NFE,t);
• Compute stochastic equation with noise magnitude eps, spatial correlation xi, for

np paths: Vsto = solveNFE(NFE,t,eps,xi,np);
• Remark: Currently, xi=0.1 is the default value.

4. Handle the output of solveNFE (callable object):

• Call deterministic solution at ti ∈ t: Vdet(ti);
• Call pth trajectory at ti: Vsto(ti,p);
• Call mean stochastic solution at ti. Example: Vsto(ti).

Sequeira. (2022). NeuralFieldEq.jl: A flexible solver to compute Neural Field Equations in several scenarios. Journal of Open Source Software,
7(75), 3974. https://doi.org/10.21105/joss.03974.

2

https://doi.org/10.21105/joss.03974

Example and code performance
The example shown below is adapted from Kulikov et al. (2019)

using NeuralFieldEq, Plots

I(x,t) = -3.4 + 8.0*exp(-x^2/(2.0*3^2))

K(x) = 2*exp(-0.08*sqrt(x^2))*(0.08*sin(pi*sqrt(x^2)/10)+cos(pi*sqrt(x^2)/10))

S(V) = V<=0.0 ? 0.0 : 1.0 # Heaviside function

nf = Input1D(1.0,20.0,0.0,100,512,20.0,200,I,K,S);

NFE = probNFE(nf)

t = [5.0,10.0,20.0] # Choose instants where sol is saved

V = solveNFE(NFE,t) # Compute deterministic solution

Vsto = solveNFE(NFE,t,0.05,100) # eps = 0.05. xi = 0.1. 100 paths

plot(V.x,[V(1),Vsto(1),Vsto(1,4)],xlabel=”x”,ylabel=”Action Potential”,

label=[”Det Solution” ”Sto Mean Solution” ”4th path”])

Figure 1: Caption for example figure.

Regarding the solver performance, the table below shows the time spent (in seconds) in
computing one time step with N nodes, for the example listed above and its 2D version. Both
equations were computed with v=400.

N 1D 2D
128 8.6e-6 1.4e-3
256 2.1e-5 9.2e-3
512 3.1e-5 3.8e-2
1024 6.2e-5 0.155
2048 1.3e-4 0.621
4096 2.6e-4 2.72

Acknowledgements
I want to thank my advisor, Pedro Lima, who kindly reviewed this article.

Sequeira. (2022). NeuralFieldEq.jl: A flexible solver to compute Neural Field Equations in several scenarios. Journal of Open Source Software,
7(75), 3974. https://doi.org/10.21105/joss.03974.

3

https://doi.org/10.21105/joss.03974

References
Amari, S. (1977). Dynamic of pattern formation in lateral-inhibition type neural fields.

Biological Cybernetics, 27, 77–87. https://doi.org/10.1007/BF00337259

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2015). Julia: A fresh approach to
numerical computing. https://doi.org/10.1137/141000671

Bressloff, P. (2011). Spatiotemporal dynamics of continuum neural fields. Journal of Physics
A: Mathematical and Theoretical, 45, 033001. https://doi.org/10.1088/1751-8113/45/3/
033001

Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93(2),
91-108. Biological Cybernetics, 93, 91–108. https://doi.org/10.1007/s00422-005-0574-y

Erlhagen, W., & Bicho, E. (2006). The dynamic neural field approach to cognitive robotics.
Journal of Neural Engineering, 3, R36–54. https://doi.org/10.1088/1741-2560/3/3/R02

Ferreira, F., Wojtak, W., Sousa, E., Louro, L., Bicho, E., & Erlhagen, W. (2020). Rapid
learning of complex sequences with time constraints: A dynamic neural field model. IEEE
Transactions on Cognitive and Developmental Systems, PP, 1–1. https://doi.org/10.1109/
TCDS.2020.2991789

Frigo, M., & Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2), 216–231. https://doi.org/10.1109/JPROC.2004.840301

Hutt, A., & P Rougier, N. (2013). Numerical simulation scheme of one- and two dimensional
neural fields involving space-dependent delays. Neural Fields: Theory and Applications.
https://doi.org/10.1007/978-3-642-54593-1_6

Kuehn, C., & G Riedler, M. (2014). Large deviations for nonlocal stochastic neural fields.
Journal of Mathematical Neuroscience, 4, 1. https://doi.org/10.1186/2190-8567-4-1

Kulikov, G. Yu., Kulikova, M. V., & Lima, P. M. (2019). Numerical simulation of neural
fields with finite transmission speed and random disturbance. 2019 23rd International
Conference on System Theory, Control and Computing (ICSTCC), 644–649. https://doi.
org/10.1109/ICSTCC.2019.8885972

Laing, C., C. Troy, W., Gutkin, B., & Ermentrout, B. (2002). Multiple bumps in a neuronal
model of working memory. SIAM Journal on Applied Mathematics, 63. https://doi.org/
10.1137/S0036139901389495

Nichols, E., & Hutt, A. (2015). Neural field simulator: Two-dimensional spatio-temporal
dynamics involving finite transmission speed. Frontiers in Neuroinformatics, 9, 25. https:
//doi.org/10.3389/fninf.2015.00025

Sequeira, T. F., & Lima, P. M. (2022). Numerical simulations of one- and two-dimensional
stochastic neural field equations with delay. Journal of Computational Neuroscience, 50(3),
299–311. https://doi.org/10.1007/s10827-022-00816-w

Wilson, H., & Cowan, J. (1972). Excitatory and inhibitory interactions in localized populations
of model neurons. Biophysical Journal, 12, 1–24. https://doi.org/10.1016/S0006-3495(72)
86068-5

Sequeira. (2022). NeuralFieldEq.jl: A flexible solver to compute Neural Field Equations in several scenarios. Journal of Open Source Software,
7(75), 3974. https://doi.org/10.21105/joss.03974.

4

https://doi.org/10.1007/BF00337259
https://doi.org/10.1137/141000671
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1007/s00422-005-0574-y
https://doi.org/10.1088/1741-2560/3/3/R02
https://doi.org/10.1109/TCDS.2020.2991789
https://doi.org/10.1109/TCDS.2020.2991789
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1007/978-3-642-54593-1_6
https://doi.org/10.1186/2190-8567-4-1
https://doi.org/10.1109/ICSTCC.2019.8885972
https://doi.org/10.1109/ICSTCC.2019.8885972
https://doi.org/10.1137/S0036139901389495
https://doi.org/10.1137/S0036139901389495
https://doi.org/10.3389/fninf.2015.00025
https://doi.org/10.3389/fninf.2015.00025
https://doi.org/10.1007/s10827-022-00816-w
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.21105/joss.03974

	Summary
	Statement of need
	Package usage
	Example and code performance
	Acknowledgements
	References

