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Summary

Science is most often concerned with questions of mechanism. In myriad applications, only
the portion of the causal effect of an exposure on an outcome through a particular pathway
under study is of interest. The study of such path-specific, or mediation, effects has a rich
history, first undertaken scientifically by Wright (1921) and Wright (1934). Today, the study
of such effects has attracted a great deal of attention in statistics and causal inference, in-
spired by applications in disciplines ranging from epidemiology and vaccinology to psychology
and economics. Examples include understanding the biological mechanisms by which vaccines
causally alter infection risk (Benkeser et al., 2021; Hejazi et al., 2020), assessing the effect
of novel pharmacological therapies on substance abuse disorder relapse (Hejazi et al., 2022;
Rudolph et al., 2020), and evaluating the effects of housing vouchers on adolescent devel-
opment (Rudolph et al., 2021). The medoutcon R package provides researchers in each of
these disciplines, and in others, with the tools necessary to implement statistically efficient
estimators of the interventional direct and indirect effects (Dı́az et al., 2020) (for brevity,
henceforth, (in)direct effects), a recently formulated set of causal effects robust to the pres-
ence of confounding of the mediator-outcome relationship by the exposure. In cases where
such confounding is a nonissue, the interventional (in)direct effects (VanderWeele et al., 2014)
reduce to the well-studied natural (in)direct effects (Pearl, 2001; Robins & Greenland, 1992),
for which medoutcon provides efficient estimators similar to those of Zheng & van der Laan
(2012). By readily incorporating the use of machine learning in the estimation of nuisance
parameters (through integration with the sl3 R package (Coyle, Hejazi, Malenica, Phillips, &
Sofrygin, 2021) of the tlverse ecosystem (van der Laan et al., 2022)), medoutcon incorpo-
rates state-of-the-art non/semi-parametric estimation techniques, facilitating their adoption
in a vast array of settings.

Statement of Need

While there is demonstrable interest in causal mediation analysis in a large variety of disci-
plines, thoughtfully implementing data analysis strategies based on recent developments in
this area is challenging. Contributions in the causal inference and statistics literature largely
fall into two key areas. Broadly, the study of identification outlines novel causal effect param-
eters with properties desirable in real-world settings (e.g., the interventional effects, which can
be learned under mediator-outcome confounding) and untestable assumptions under which a
statistical functional corresponds to a causal estimand of interest. A complementary line of
study develops non/semi-parametric efficiency theory for the statistical functionals outlined
in the causal identification literature, allowing for their robust estimation with modern tech-
niques from machine learning. Neither concerns itself with opening the door to applying these
estimators in real-world data analyses. Moreover, the implementation of open source software
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for efficient estimators of causal effects is complex – for such a task, the data scientist must
be knowledgeable of causal inference, semiparametric statistical theory, machine learning,
and the intersection of these disciplines, and that is to forego mention of research software
engineering best practices, including, for example, unit/regression testing and automated con-
tinuous integration. The medoutcon R package is a free, open source implementation of
non/semi-parametric efficient estimators of the natural and interventional (in)direct effects,
providing data scientists in research and in industry with access to state-of-the-art statistical
methodology for causal mediation analysis. Its estimators have been interrogated in simula-
tion studies and applied in real-world data analyses. To the best of our knowledge, no other
R package provides similarly convenient access to multiply robust, non/semi-parametric effi-
cient estimators of causal mediation effects with a flexible interface to accommodate machine
learning of nuisance parameters.

Natural and Interventional Causal Mediation Effects

To evaluate the causal effects of an exposure on an outcome through mediating pathways,
let’s consider a dataset of n units, where the observed data on a single unit is assumed to
have been generated by a nonparametric structural equation model (NPSEM) (Pearl, 2009):

W = fW (UW );A = fA(W,UA);Z = fZ(W,A,UZ);

M = fM (W,A,Z, UM );Y = fY (W,A,Z,M,UY ),

where W are baseline (pre-exposure) covariates, A ∈ {0, 1} is the (binary) exposure of interest,
Z is an intermediate confounder of the mediator-outcome relationship and is affected by
exposure A, M represents mediating variables, and Y is the outcome. This NPSEM admits
an equivalent representation as a directed acyclic graph (or DAG), in which each variable is
a node and dependencies are represented by directed paths between the nodes. The natural
(in)direct effects cannot generally be identified (i.e., learned from the observed data) in the
presence of intermediate confounding, so, for now, we make the simplifying assumption that
the intermediate variable Z is absent. In this simple case, the population average treatment
effect (ATE) – that is, the total effect of A on Y , comparing two exposure contrasts {a′, a⋆}
– may be decomposed into the natural direct effect (NDE) and the natural indirect effect
(NIE) as

E[Y (a′)− Y (a⋆)] = E[Y (a′,M(a′))− Y (a′,M(a⋆))]︸ ︷︷ ︸
Indirect effect (through M)

+E[Y (a′,M(a⋆))− Y (a⋆,M(a⋆))]︸ ︷︷ ︸
Direct effect (not through M)

,

where the counterfactual variables Y (·) are potential outcomes (Hernán & Robins, 2022;
Imbens & Rubin, 2015) – that is, Y (a′) is the value that the outcome would take when the
exposure is set to level a′, possibly contrary to fact. Similarly, M(a⋆) is the value that the
mediators would take when the exposure is set to level a⋆, as the result of an intervention,
for example. The NIE captures the effect of the exposure A on Y through the mediating
variables M while the NDE captures the effect of A on Y through all other pathways. Robins
& Greenland (1992) and Pearl (2001) independently studied this decomposition within the
potential outcomes and NPSEM frameworks, respectively. In both cases, the NDE and NIE
are derived from the ATE by introducing a decomposition term that deterministically sets
the values of the exposure and mediators to differing values by the application of static
interventions. As regards estimation, Tchetgen Tchetgen & Shpitser (2012) and Zheng & van
der Laan (2012) outlined non/semi-parametric efficiency theory for developing estimators of
the NDE and NIE and proposed efficient estimators of these causal quantities.
The presence of intermediate confounders Z often cannot be ruled out in real-world data
analysis scenarios. Such post-exposure variables, which are affected by A and affect both
M and Y , complicate efforts to disentangle the effect of A on Y through paths involving
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M and other paths. Recognizing the limitations of the natural effects in these settings,
Didelez et al. (2006), Petersen et al. (2006), VanderWeele et al. (2014), and Rudolph et al.
(2017), among others, contributed to the development of the interventional (in)direct effects.
Unlike the decomposition strategy that delineates the NDE and NIE, these effects require a
more sophisticated approach to identification, relying upon stochastic interventions on the
mediator(s), which require random draws from the mediator’s post-intervention distribution
rather than the setting of fixed counterfactual values. Specifically, for the two exposure
contrasts {a′, a⋆}, the effect of A on Y can be defined as the difference in expected outcome
in the hypothetical worlds in which (A,M) = (a′, Ga′) versus (A,M) = (a⋆, Ga⋆). Here, Ga

denotes a random draw from the conditional distribution of Ma conditional on W , as defined
by a stochastic intervention. The direct and indirect effects are defined as follows

E[Y (a′, Ga′)− Y (a⋆, Ga⋆)] = E[Y (a′, Ga′)− Y (a′, Ga⋆)]︸ ︷︷ ︸
Indirect effect (through M)

+E[Y (a′, Ga⋆)− Y (a⋆, Ga⋆)]︸ ︷︷ ︸
Direct effect (not through M)

.

Like the NDE, this interventional direct effect measures the effects through all paths avoiding
the mediating variables. Analogous to the NIE, the interventional indirect effect measures the
effect through paths involving the mediators. Note, however, that natural and interventional
mediation effects have different interpretations. That is, the interventional indirect effect
measures the effect of fixing the exposure at a′ while setting the mediator to a random
draw Ga⋆ (i.e., under an intervention setting the exposure to a⋆) versus a random draw Ga′

(i.e., after setting the exposure to a′), given covariates W . Intuitively, the interventional
effects remain identifiable under intermediate confounding since the stochastic intervention
on the mediators breaks the relationship between Z and M . Prior to the work of Dı́az
et al. (2020), and contemporaneous developments by Benkeser & Ran (2021), non/semi-
parametric efficiency theory for the interventional (in)direct effects was unavailable. Recently,
a novel family of interventional effects, accommodating flexible stochastic interventions on
the exposure (Hejazi et al., 2022), have been formulated as well.

medoutcon’s Scope

Development of the medoutcon package began as a software accompaniment to the theoret-
ical developments of Dı́az et al. (2020). Where the investigations of these authors outlined
efficient estimators of the interventional (in)direct effects, medoutcon implements these effi-
cient estimators. Implemented in the R language and environment for statistical computing (R
Core Team, 2022), medoutcon aims to provide a simple application user interface (API) for
convenience in a variety of data analytic applications. Specifically, medoutcon – via a single,
user-facing eponymous function medoutcon() – provides access to both one-step and targeted
minimum loss (TML) estimators of these causal (in)direct effects. State-of-the-art machine
learning algorithms, including ensemble modeling (van der Laan et al., 2007), may readily
be used for the estimation of relevant nuisance parameters, through a design that tightly
couples medoutcon with the sl3 R package (Coyle, Hejazi, Malenica, Phillips, & Sofrygin,
2021). Cross-fitting is automatically incorporated, via the origami R package (Coyle, Hejazi,
Malenica, & Phillips, 2021; Coyle & Hejazi, 2018), in computing the efficient estimators, al-
lowing for some common but restrictive theoretical regularity conditions to be relaxed (Bickel
et al., 1993; Chernozhukov et al., 2017; Zheng & van der Laan, 2011).
Beyond implementing the interventional (in)direct effects, medoutcon additionally allows for
the natural (in)direct effects to be estimated when intermediate confounders are omitted
from the call to the medoutcon() function (i.e., by setting Z = NULL). This feature is
based on a correspondence between the identifying statistical functionals of the natural and
interventional (in)direct effects in the absence of intermediate confounding. In this simplified
case, the efficient estimators of the interventional (in)direct effects formulated by Dı́az et al.
(2020) are analogous to the efficient estimators of the natural (in)direct effects formulated by
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Zheng & van der Laan (2012). By supporting this case, medoutcon serves as a one-stop tool
for estimating these scientifically informative causal mediation effects, allowing for practicing
data scientists and applied statisticians to deploy cutting-edge estimators of the natural and
interventional (in)direct effects through a unified API.

Availability

The medoutcon package is publicly available via GitHub, with plans for submission to the
Comprehensive R Archive Network, pending the inclusion of its dependencies (sl3, in par-
ticular) in that repository. Use of the medoutcon package has been extensively documented
in the package’s README, a vignette, and its documentation website. Ongoing development
of the package incorporates research and data science software engineering best practices,
including a suite of unit tests and automated continuous integration checking. medoutcon
has and will continue to be used in the teaching of conference workshops on modern causal
mediation analysis (e.g., see recent materials from SER 2021).
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