
ViMMS 2.0: A framework to develop, test and optimise
fragmentation strategies in LC-MS metabolomics
Joe Wandy1¶, Vinny Davies2, Ross McBride3, Stefan Weidt1, Simon
Rogers3, and Rónán Daly1

1 Glasgow Polyomics, University of Glasgow, United Kingdom 2 School of Mathematics and Statistics,
University of Glasgow, United Kingdom 3 School of Computing Science, University of Glasgow,
United Kingdom ¶ Corresponding author

DOI: 10.21105/joss.03990

Software
• Review
• Repository
• Archive

Editor: Charlotte Soneson
Reviewers:

• @jspaezp
• @mkoesters

Submitted: 25 November 2021
Published: 30 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
The choice of fragmentation strategies used during mass-spectrometry-based data acquisition
directly affects the quality and coverage of subsequent structural identification – a crucial step in
untargeted metabolomics data analysis. However, developing novel fragmentation strategies is
challenging due to the high experimental cost of running an actual mass spectrometry instrument
and the lack of a programmable simulation environment to support their development. ViMMS
2.0 is a software framework that can be used to develop new fragmentation strategies in
metabolomics completely in-silico as well as on mass spectrometry instruments. The framework
allows users to generate chemical objects (produced synthetically or extracted from existing
mzML files) and simulate a tandem mass spectrometry process, where different fragmentation
strategies can be rapidly implemented, tested and evaluated. In this paper, we present ViMMS
2.0, highlighting the software design choices of the framework and illustrate with an example
how a new fragmentation strategy could be implemented in ViMMS 2.0.

Statement of need
Metabolomics is the study of small molecules that participate in important cellular processes
of an organism. Being the closest to the phenotype, changes to metabolite levels are often
expressed as a response to genetic or environmental changes (Guijas et al., 2018). Liquid
chromatography (LC) coupled to mass spectrometry (MS) is commonly used to identify small
molecules in untargeted experiments, where the identities of molecules of interests are not
known in advance (Smith et al., 2014). In this setup, molecules elute through the LC column
at different retention times (RTs) before being presented to the MS instrument. In tandem
mass spectrometry, selected ions produced from survey scans (MS1; typically measurements of
the intact ions) are isolated for fragmentation in a second MS instrument (MS2), resulting in
a spectral fingerprint for each isolated ion that is often used for structural identification.

Typically the raw LC-MS/MS measurements are processed in a data pre-processing pipeline to
produce a list of chromatographic MS1 peaks characterised by their mass-to-charge (m/z), RT
and intensity values. During identification, molecular annotations are assigned to MS1 peaks
through matching with internal standard compounds (having known m/z and RT values) or by
searching spectral databases with the MS2 spectra associated with MS1 peaks. An important
factor that determines how many molecules can be annotated with spectral databases using
fragmentation data is the quality of the MS2 spectra acquired, and the coverage (for how
many of the MS1 peaks were MS2 spectra collected). Good MS2 fragmentation strategies
aim to produce spectra for as many unknown ions in the sample as possible, but also produce
high quality spectra which can be reliably evaluated.

Wandy et al. (2022). ViMMS 2.0: A framework to develop, test and optimise fragmentation strategies in LC-MS metabolomics. Journal of
Open Source Software, 7(71), 3990. https://doi.org/10.21105/joss.03990.

1

https://doi.org/10.21105/joss.03990
https://github.com/openjournals/joss-reviews/issues/3990
https://github.com/glasgowcompbio/vimms/
https://doi.org/10.5281/zenodo.6395052
http://csoneson.github.io/
https://github.com/jspaezp
https://github.com/mkoesters
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03990

A common challenge faced by computational researchers with an interest in improving frag-
mentation strategies in tandem-mass-spectrometry-based metabolomics is the lack of access to
and the high cost of running MS instruments. This issue is particularly relevant as developing
and optimising novel fragmentation strategies tends to be conducted iteratively, requiring many
measurements to be run to optimise the strategy until the desired performance level is reached.
To lower this barrier, we present Virtual Metabolomics Mass Spectrometer (ViMMS) 2.0, a
programmable and modular framework that simulates the chemical generation process and the
execution of fragmentation strategies in LC-MS/MS-based metabolomics. A notable feature
of the ViMMS framework is the ability to design strategies that can respond, in real time, to
the data being produced.

Related works
Existing mass spectrometry simulators are ill-fitted to support the rapid development of
fragmentation strategies that respond to incoming scans in real time. This is primarily due
to the limited ways users can incorporate new strategies within existing simulator codebases.
Currently available simulators such as as Mspire-Simulator (Noyce et al., 2013), JAMSS (Smith
& Prince, 2015), OpenMS-Simulator (Wang et al., 2015), MSAcquisitionSimulator (Goldfarb et
al., 2016) and SMITER (Kösters et al., 2021) exist as stand-alone programs or GUI applications,
and are not easily scriptable or programmable.

Additionally the above-highlighted simulators have been developed to simulate the generation
of proteomics data. In principle they could be extended to support metabolomics data, but
this is not a trivial change. Our work in ViMMS 1.0 (Wandy et al., 2019) was the first
simulator that allowed for a metabolomics-based simulation environment. However ViMMS
1.0 suffered from several weaknesses: its codebase was monolithic, and the tight coupling
between modules made it difficult to instantiate input from different sources or to introduce
different extensions to the base functionalities, including adding new fragmentation strategies.
The focus of ViMMS 1.0 was on simulating a complete tandem mass spectrometry run in
metabolomics, rather than enabling the development of new strategies.

The ViMMS 2.0 Framework
In ViMMS 2.0 we significantly improved the simulator framework architecture with the goal
of supporting fragmentation strategy development and validation. An overview of the overall
architecture is given in Figure 1. The simulator framework consists of two core functionalities:
the generation of chemicals from multiple sources, and the execution of fragmentation strategies,
implemented as controller classes. The improved modularity in ViMMS 2.0 allows many aspects
of the framework to be swapped out with alternative implementations, including classes that
generate various aspects of chemicals (e.g. measured m/z, RT, intensity) for simulation
(Figure 1A), mass spectrometry simulation (Figure 1B), controllers that implement different
fragmentation strategies (Figure 1C), as well as the environmental context to run them all
(Figure 1D). Different evaluation methods are also provided to compare different controllers’
performance.

Wandy et al. (2022). ViMMS 2.0: A framework to develop, test and optimise fragmentation strategies in LC-MS metabolomics. Journal of
Open Source Software, 7(71), 3990. https://doi.org/10.21105/joss.03990.

2

https://doi.org/10.21105/joss.03990

A. Chemical
Generations

B. Mass
Spectrometry

C. Controllers

Formula (m/z) Sampler

RT & Intensity Sampler

Chromatogram Sampler

Scan Time Sampler

MS2 Spectra Sampler

Input chemicals

• Receive incoming
scans

• Generate scan
parameters

D. Environment

Figure 1: Overall ViMMS 2.0 System Architecture.

Generating Input Chemicals
Chemicals are input objects to the simulation process in ViMMS 2.0, and can be generated
in different ways: either in a purely synthetic manner (e.g. sampling their properties from
databases or fixed statistical distributions) or by construction from existing data (mzML files)
via the extraction of RoI traces. The framework allows users to plug in modular classes that
specify parameters of chemicals, such as the distribution of their m/z values, RT, intensities,
chromatographic shapes and associated MS2 spectra (Figure 1A).

Chemicals can be generated in single-sample or multi-sample settings. When generating
multi-sample data, ViMMS allows users to specify how chemicals vary across samples. Given a
list of base chemicals (chemicals that are shared) across samples, users can indicate in what
proportion of extracts chemicals should appear (dropout rate) or how chemical intensities
should vary across a case-control experiment.

Executing Fragmentation Strategies
Once chemical objects have been prepared (whether for single- or multi-sample settings),
different fragmentation strategies can be run. Fragmentation strategies are implemented
as controllers that extend from the base Controller class. Controllers are executed in
the context of an environment bringing together input chemicals, mass spectrometer and
controllers as a single context (Figure 1D). Note that the modularity of the mass spectrometry
and environment classes means it is possible to swap purely simulated MS and environment
implementation with alternatives that control an actual MS instrument while other aspects
remain unchanged. In other work, we demonstrated the practicality of this idea by building
alternative implementations of these classes that use the Thermo Fisher IAPI (Thermo Fisher
Scientific, n.d.) for bridging, making it possible for fragmentation strategies to be executed in
simulation as well as unchanged on Thermo Tribrid Fusion instruments (Davies et al., 2021).

Implementing a New Controller
To illustrate how new strategies could be built on top of ViMMS 2.0, an example is given
here of a Top-N controller that selects the N most intense precursor ions for fragmentation.
This strategy is common in real-world data-dependent acquisition (DDA) experiments and is
included to demonstrate how straightforward its implementation is within the framework.

In this implementation, the controller SimpleTopNController extends from a base Controller

that provides base methods to handle various scan interactions with the mass spectrometer.

Wandy et al. (2022). ViMMS 2.0: A framework to develop, test and optimise fragmentation strategies in LC-MS metabolomics. Journal of
Open Source Software, 7(71), 3990. https://doi.org/10.21105/joss.03990.

3

https://doi.org/10.21105/joss.03990

This implementation overrides the _process_scan method, which determines how precursor
ions in an incoming MS1 scan are prioritised for fragmentation. Information on what the mass
spectrometer should do next is stored as a list of ScanParameters, which is returned from the
controller to the mass spectrometer object by _process_scan.

Scan parameters control, for example, whether a controller flexibly targets a single precursor
ion for fragmentation, in what is commonly known as data-dependent acquisition (DDA), or
whether it instead covers a range of m/z values, potentially fragmenting many precursor ions
(data-independent acquisition; DIA). Although not shown in this example, other methods in
the parent Controller could also be overridden for different purposes, such as responding
when an acquisition has been started or stopped.

import numpy as np

from vimms.Controller.base import Controller

class SimpleTopNController(Controller):

def _process_scan(self, scan):

new_tasks = []

If the controller has received an MS1 scan to process

if self.scan_to_process is not None:

Extract m/z and intensity values in this MS1 scan

mzs = self.scan_to_process.mzs

intensities = self.scan_to_process.intensities

Select only the Top-N precursors, sorted by intensities descending

idx = np.argsort(intensities)[::-1]

idx = idx[0:self.N]

Loop over the Top-N precursors and target them for fragmentation

for i in idx:

mz, intensity = mzs[i], intensities[i]

Schedule a new MS2 scan targeting the selected precursor ion

dda_scan_params = self.get_ms2_scan_params(mz, intensity, ...)

new_tasks.append(dda_scan_params)

self.current_task_id += 1

Schedule the next survey MS1 scan after doing N MS2 scans

ms1_scan_params = self.get_ms1_scan_params()

new_tasks.append(ms1_scan_params)

self.current_task_id += 1

Set this MS1 scan as has been processed

and indicate what is the next MS1 scan id to process

self.scan_to_process = None

self.next_processed_scan_id = self.current_task_id

Return all the scheduled tasks to be executed by the mass spec

return new_tasks

The simple Top-N scheme above could be enhanced to incorporate dynamic exclusion windows
to prevent the same precursors from being fragmented repeatedly, or to incorporate different

Wandy et al. (2022). ViMMS 2.0: A framework to develop, test and optimise fragmentation strategies in LC-MS metabolomics. Journal of
Open Source Software, 7(71), 3990. https://doi.org/10.21105/joss.03990.

4

https://doi.org/10.21105/joss.03990

schemes prioritising which of the precursor ions to fragment. We have included a more complete
Top-N strategy as the baseline controller in ViMMS 2.0 against which other strategies can
be benchmarked. Two enhanced DDA controllers (named SmartROI and WeightedDEW,
outlined by Davies et al. (2021)) are also provided that demonstrate how novel fragmentation
strategies could be rapidly implemented and validated in ViMMS 2.0. SmartROI accomplishes
this by tracking regions-of-interest in real-time and targeting those for fragmentation, while
WeightedDEW implements a weighted dynamic exclusion scheme to decide prioritisation of
precursor ions for fragmentation. Code is provided to compute various evaluation metrics, such
as coverage and intensities of fragmented precursors. This allows users to benchmark different
controller implementations comparatively.

Software requirements
ViMMS 2.0 is distributed as a Python package that can be easily installed using pip. We
require Python 3.0 or higher to run the framework. It depends on common packages such as
numpy, scipy and pandas. Automated unit tests are available in Python, as well as continuous
integration that build and run those unit tests in our code repository. Our codebase is stored
in GitHub and we welcome contributions from researchers with interest in developing novel
fragmentation strategies in both data-dependent and data-independent acquisitions.

Conclusion
in this paper, we have introduced ViMMS 2.0, an extension of the simulator framework in
ViMMS 1.0. ViMMS 2.0 is modular, extensible and can be used in Python to simulate
fragmentation strategies for untargeted metabolomics studies. In other work (Davies et al.,
2021), the utility of ViMMS 2.0 has been validated through additional bridging code that allows
simulated controllers to run unchanged on both the simulator and actual mass spectrometers.
It is our hope that the work outlined here will be used to advance the development of novel
fragmentation strategies in untargeted metabolomics.

Acknowledgements
Joe Wandy, Vinny Davies, Stefan Weidt, Simon Rogers and Rónán Daly acknowledge EPSRC
project EP/R018634/1 on ‘Closed-loop data science for complex, computationally and data-
intensive analytics’.

References
Davies, V., Wandy, J., Weidt, S., J J van der Hooft, J., Miller, A., Daly, R., & Rogers, S.

(2021). Rapid development of improved data-dependent acquisition strategies. Analytical
Chemistry, 93(14), 5676–5683. https://doi.org/10.1021/acs.analchem.0c03895

Goldfarb, D., Wang, W., & Major, M. B. (2016). MSAcquisitionSimulator: Data-dependent
acquisition simulator for LC-MS shotgun proteomics. Bioinformatics, 32(8), 1269–1271.
https://doi.org/10.1093/bioinformatics/btv745

Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E., & Siuzdak, G. (2018).
Metabolomics activity screening for identifying metabolites that modulate phenotype.
Nature Biotechnology, 36(4), 316–320. https://doi.org/10.1038/nbt.4101

Kösters, M., Leufken, J., & Leidel, S. A. (2021). SMITER—a Python library for the simulation
of LC-MS/MS experiments. Genes, 12(3), 396. https://doi.org/10.3390/genes12030396

Noyce, A. B., Smith, R., Dalgleish, J., Taylor, R. M., Erb, K., Okuda, N., & Prince, J. T.
(2013). Mspire-Simulator: LC-MS shotgun proteomic simulator for creating realistic gold

Wandy et al. (2022). ViMMS 2.0: A framework to develop, test and optimise fragmentation strategies in LC-MS metabolomics. Journal of
Open Source Software, 7(71), 3990. https://doi.org/10.21105/joss.03990.

5

https://doi.org/10.1021/acs.analchem.0c03895
https://doi.org/10.1093/bioinformatics/btv745
https://doi.org/10.1038/nbt.4101
https://doi.org/10.3390/genes12030396
https://doi.org/10.21105/joss.03990

standard data. Journal of Proteome Research, 12(12), 5742–5749. https://doi.org/10.
1021/pr400727e

Smith, R., Mathis, A. D., Ventura, D., & Prince, J. T. (2014). Proteomics, lipidomics,
metabolomics: A mass spectrometry tutorial from a computer scientist’s point of view.
BMC Bioinformatics, 15(7), 1–14. https://doi.org/10.1186/1471-2105-15-s7-s9

Smith, R., & Prince, J. T. (2015). JAMSS: Proteomics mass spectrometry simulation in Java.
Bioinformatics, 31(5), 791–793. https://doi.org/10.1093/bioinformatics/btu729

Thermo Fisher Scientific. (n.d.). Thermo Fisher Application Programming Interface. https:
//github.com/thermofisherlsms/iapi.

Wandy, J., Davies, V., J J van der Hooft, J., Weidt, S., Daly, R., & Rogers, S. (2019). In silico
optimization of mass spectrometry fragmentation strategies in metabolomics. Metabolites,
9(10), 219. https://doi.org/10.1101/744227

Wang, Y., Yang, F., Wu, P., Bu, D., & Sun, S. (2015). OpenMS-Simulator: An open-source
software for theoretical tandem mass spectrum prediction. BMC Bioinformatics, 16(1),
1–6. https://doi.org/10.1186/s12859-015-0540-1

Wandy et al. (2022). ViMMS 2.0: A framework to develop, test and optimise fragmentation strategies in LC-MS metabolomics. Journal of
Open Source Software, 7(71), 3990. https://doi.org/10.21105/joss.03990.

6

https://doi.org/10.1021/pr400727e
https://doi.org/10.1021/pr400727e
https://doi.org/10.1186/1471-2105-15-s7-s9
https://doi.org/10.1093/bioinformatics/btu729
https://github.com/thermofisherlsms/iapi
https://github.com/thermofisherlsms/iapi
https://doi.org/10.1101/744227
https://doi.org/10.1186/s12859-015-0540-1
https://doi.org/10.21105/joss.03990

	Summary
	Statement of need
	Related works
	The ViMMS 2.0 Framework
	Generating Input Chemicals
	Executing Fragmentation Strategies
	Implementing a New Controller
	Software requirements

	Conclusion
	Acknowledgements
	References

