
DCISolver.jl: A Julia Solver for Nonlinear Optimization
using Dynamic Control of Infeasibility
Tangi Migot∗1, Dominique Orban1, and Abel Soares Siqueira2

1 GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal,
QC, Canada. 2 Netherlands eScience Center, Amsterdam, NLDOI: 10.21105/joss.03991

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @odow
• @jbcaillau

Submitted: 07 December 2021
Published: 11 February 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

DCISolver.jl is a new Julia (Bezanson et al., 2017) implementation of the Dynamic Control
of Infeasibility method (DCI), introduced by Bielschowsky & Gomes (2008), for solving the
equality-constrained nonlinear optimization problem

minimize
x∈Rn

f(x) subject to h(x) = 0, (1)

where f : Rn → R and h : Rn → Rm are twice continuously differentiable. DCI is an iterative
method that aims to compute a local minimum of (1) using first and second-order derivatives.
Our initial motivation for developing DCISolver.jl is to solve PDE-constrained optimization
problems, many of which have equality constraints only.
Each DCI iteration is a two-step process. A tangential step first approximately minimizes a
quadratic model subject to linearized constraints within a trust region. A normal step then
recenters feasibility by way of a trust cylinder, which is the set of points such that ∥h(x)∥ ≤ ρ,
where ρ > 0. The idea of trust cylinders is to control infeasibility, contrary to penalty methods,
which encourage feasibility by penalizing infeasibility. Each time the trust cylinder is violated
during the tangential step, the normal step brings infeasibility back within prescribed limits.
The radius ρ of the trust cylinder decreases with the iterations, so a feasible and optimal point
results in the limit. For details and theoretical convergence, we refer the reader to the original
paper (Bielschowsky & Gomes, 2008).
DCISolver.jl is built upon the JuliaSmoothOptimizers (JSO) tools (Migot et al., 2021b).
JSO is an academic organization containing a collection of Julia packages for nonlinear op-
timization software development, testing, and benchmarking. It provides tools for building
models, accessing problems repositories, and solving subproblems. DCISolver.jl takes as
input an AbstractNLPModel, JSO’s general model API defined in NLPModels.jl (Orban et
al., 2020a), a flexible data type to evaluate objective and constraints, their derivatives, and to
provide any information that a solver might request from a model. The user can hand-code
derivatives, use automatic differentiation, or use JSO-interfaces to classical mathematical op-
timization modeling languages such as AMPL (Fourer et al., 2003), CUTEst (Gould et al.,
2015), or JuMP (Dunning et al., 2017).
Internally, DCISolver.jl combines cutting-edge numerical linear algebra solvers. The normal
step relies heavily on iterative methods for linear algebra from Krylov.jl (Montoison et al.,
2020), which provides more than 25 implementations of standard and novel Krylov methods,
and they all can be used with Nvidia GPU via CUDA.jl (Besard et al., 2018). The tangential
step is computed using the sparse factorization of a symmetric and quasi-definite matrix via
LDLFactorizations.jl (Orban & contributors, 2020), or the well-known Fortran code MA57
(Duff, 2004) from the HSL (2007), via HSL.jl (Orban & contributors, 2021).

∗corresponding author

Migot et al., (2022). DCISolver.jl: A Julia Solver for Nonlinear Optimization using Dynamic Control of Infeasibility. Journal of Open Source
Software, 7(70), 3991. https://doi.org/10.21105/joss.03991

1

https://doi.org/10.21105/joss.03991
https://github.com/openjournals/joss-reviews/issues/3991
https://github.com/JuliaSmoothOptimizers/DCISolver.jl
https://doi.org/10.5281/zenodo.6040222
https://avesis.istanbul.edu.tr/mhsatman
https://github.com/odow
https://github.com/jbcaillau
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03991


One of the significant advantages of our implementation is that the normal step is
factorization-free, i.e., it uses second-order information via Hessian-vector products but does
not need access to the Hessian as an explicit matrix. This makes DCISolver.jl a valuable
asset for large-scale problems, for instance to solve PDE-constrained optimization problems
(Migot et al., 2021a). In the current implementation, the tangential step requires the explicit
hessian, but removing that restriction is the subject of ongoing research, as is the treatment
of inequality constraints.

Statement of need

Julia’s JIT compiler is attractive for the design of efficient scientific computing software, and,
in particular, mathematical optimization (Lubin & Dunning, 2015), and has become a natural
choice for developing new solvers.
There already exist ways to solve (1) in Julia. If (1) is amenable to being modeled in JuMP
(Dunning et al., 2017), the model may be passed to state-of-the-art solvers, implemented
in low-level compiled languages, via wrappers thanks to Julia’s native interoperability with
such languages. However, interfaces to low-level languages have limitations that pure Julia
implementations do not have, including the ability to apply solvers with various arithmetic
types. Optim.jl (Mogensen & Riseth, 2018) implements a factorization-based pure Julia
primal-dual interior-point method for problems with both equality and inequality constraints
modeled after Artlelys Knitro (Byrd et al., 2006) and Ipopt (Wächter & Biegler, 2006).
Percival.jl (Santos & Siqueira, 2020) is a factorization-free pure Julia implementation of
an augmented Lagrangian method for problems with both equality and inequality constraints
based on bound-constrained subproblems.
To the best of our knowledge, there is no available maintained open-source implementation
of DCI in existence. The original authors did not make their implementation public, and the
other known implementation is dcicpp (Siqueira, 2016), extending the original method to
inequalities in the Ph.D. thesis by Siqueira (2013), and it has had no updates in the last 5
years. Hence, we offer an interesting alternative to augmented Lagrangian and interior-point
methods in the form of an evolving, research level yet stable solver.
DCISolver.jl can solve large-scale problems and can be benchmarked easily against other
JSO-compliant solvers using SolverBenchmark.jl (Orban et al., 2020b). We include below
performance profiles (Dolan & Moré, 2002) of DCISolver.jl against Ipopt on 82 problems
from CUTEst (Gould et al., 2015) with up to 10,000 variables and 10,000 constraints. Ipopt
solved 72 problems (88%) successfully, which is one more than DCI. Without explaining
performance profiles in full detail, the plot on the left shows that Ipopt is the fastest on 20 of the
problems (28%), while DCI is the fastest on 51 of the problems (72%) among the 71 problems
solved by both solvers. The plot on the right shows that Ipopt used fewer evaluations of
objective and constraint functions on 50 of the problems (70%), DCI used fewer evaluations on
17 of the problems (24%), and there was a tie in the number of evaluations on 4 problems (6%).
Overall, this performance profile is very encouraging for such a young implementation. The
package’s documentation includes more extensive benchmarks on classical test sets showing
that DCISolver.jl is also competitive with Artelys Knitro.

Migot et al., (2022). DCISolver.jl: A Julia Solver for Nonlinear Optimization using Dynamic Control of Infeasibility. Journal of Open Source
Software, 7(70), 3991. https://doi.org/10.21105/joss.03991

2

https://doi.org/10.21105/joss.03991


Acknowledgements

Tangi Migot is supported by IVADO and the Canada First Research Excellence Fund / Apogée,
and Dominique Orban is partially supported by an NSERC Discovery Grant.

References

Besard, T., Foket, C., & De Sutter, B. (2018). Effective extensible programming: Unleashing
Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems. https://doi.org/
10.1109/TPDS.2018.2872064

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bielschowsky, R. H., & Gomes, F. A. M. (2008). Dynamic control of infeasibility in equality
constrained optimization. SIAM Journal on Optimization, 19(3), 1299–1325. https://doi.
org/10.1137/070679557

Byrd, R. H., Nocedal, J., & Waltz, R. A. (2006). Knitro: An integrated package for nonlinear
optimization. In Large-scale nonlinear optimization (pp. 35–59). Springer. https://doi.
org/10.1007/0-387-30065-1_4

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, 91(2), 201–213. https://doi.org/10.1007/
s101070100263

Duff, I. S. (2004). MA57—a code for the solution of sparse symmetric definite and indefinite
systems. ACM Transactions on Mathematical Software, 30(2), 118–144. https://doi.org/
10.1145/992200.992202

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling language for mathematical
optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/15M1020575

Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL. A modeling language for
mathematical programming. 2nd ed., Brooks/Cole, Pacific Grove, CA. https://doi.org/
10.1287/mnsc.36.5.519

Migot et al., (2022). DCISolver.jl: A Julia Solver for Nonlinear Optimization using Dynamic Control of Infeasibility. Journal of Open Source
Software, 7(70), 3991. https://doi.org/10.21105/joss.03991

3

https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1137/141000671
https://doi.org/10.1137/070679557
https://doi.org/10.1137/070679557
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/992200.992202
https://doi.org/10.1145/992200.992202
https://doi.org/10.1137/15M1020575
https://doi.org/10.1287/mnsc.36.5.519
https://doi.org/10.1287/mnsc.36.5.519
https://doi.org/10.21105/joss.03991


Gould, N. I., Orban, D., & Toint, P. L. (2015). CUTEst: A constrained and unconstrained
testing environment with safe threads for mathematical optimization. Computational Opti-
mization and Applications, 60(3), 545–557. https://doi.org/10.1007/s10589-014-9687-3

HSL. (2007). The HSL mathematical software library. STFC Rutherford Appleton Laboratory.
http://www.hsl.rl.ac.uk

Lubin, M., & Dunning, I. (2015). Computing in operations research using Julia. INFORMS
Journal on Computing, 27(2), 238–248. https://doi.org/10.1287/ijoc.2014.0623

Migot, T., Orban, D., & Siqueira, A. S. (2021a). PDENLPModels.jl: A NLPModel API for
optimization problems with PDE-constraints. https://doi.org/10.5281/zenodo.5056629

Migot, T., Orban, D., & Siqueira, A. S. (2021b). The JuliaSmoothOptimizers ecosystem for
linear and nonlinear optimization. https://doi.org/10.5281/zenodo.2655082

Mogensen, P. K., & Riseth, A. N. (2018). Optim: A mathematical optimization package for
Julia. Journal of Open Source Software, 3(24), 615. https://doi.org/10.21105/joss.00615

Montoison, A., Orban, D., & contributors. (2020). Krylov.jl: A Julia basket of hand-picked
Krylov methods. https://doi.org/10.5281/zenodo.822073

Orban, D., & contributors. (2020). LDLFactorizations.jl: Factorization of symmetric matrices.
https://doi.org/10.5281/zenodo.3900668

Orban, D., & contributors. (2021). HSL.jl: A Julia interface to the HSL mathematical
software library. https://doi.org/10.5281/zenodo.2658672

Orban, D., Siqueira, A. S., & contributors. (2020a). NLPModels.jl: Data structures for
optimization models. https://doi.org/10.5281/zenodo.2558627

Orban, D., Siqueira, A. S., & contributors. (2020b). SolverBenchmark.jl: Benchmark tools
for solvers. https://doi.org/10.5281/zenodo.3948381

Santos, E. A. dos, & Siqueira, A. S. (2020). Percival.jl: An augmented lagrangian method.
https://doi.org/10.5281/zenodo.3969045

Siqueira, A. S. (2013). Controle dinâmico de infactibilidade para programação não linear [PhD
thesis, Universidade Estadual de Campinas]. https://doi.org/10.47749/T/UNICAMP.
2013.918998

Siqueira, A. S. (2016). Dcicpp: Dynamic control of infeasibility. In GitHub repository. GitHub.
https://github.com/abelsiqueira/dcicpp

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

Migot et al., (2022). DCISolver.jl: A Julia Solver for Nonlinear Optimization using Dynamic Control of Infeasibility. Journal of Open Source
Software, 7(70), 3991. https://doi.org/10.21105/joss.03991

4

https://doi.org/10.1007/s10589-014-9687-3
http://www.hsl.rl.ac.uk
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.5281/zenodo.5056629
https://doi.org/10.5281/zenodo.2655082
https://doi.org/10.21105/joss.00615
https://doi.org/10.5281/zenodo.822073
https://doi.org/10.5281/zenodo.3900668
https://doi.org/10.5281/zenodo.2658672
https://doi.org/10.5281/zenodo.2558627
https://doi.org/10.5281/zenodo.3948381
https://doi.org/10.5281/zenodo.3969045
https://doi.org/10.47749/T/UNICAMP.2013.918998
https://doi.org/10.47749/T/UNICAMP.2013.918998
https://github.com/abelsiqueira/dcicpp
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.21105/joss.03991

	Summary
	Statement of need
	Acknowledgements
	References

