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Summary

Automated data-driven modeling, the process of directly discovering the governing equations
of a system from data, is increasingly being used across the scientific community. PySINDy
is a Python package that provides tools for applying the sparse identification of nonlinear dy-
namics (SINDy) approach to data-driven model discovery. In this major update to PySINDy,
we implement several advanced features that enable the discovery of more general differential
equations from noisy and limited data. The library of candidate terms is extended for the
identification of actuated systems, partial differential equations (PDEs), and implicit differ-
ential equations. Robust formulations, including the integral form of SINDy and ensembling
techniques, are also implemented to improve performance for real-world data. Finally, we
provide a range of new optimization algorithms, including several sparse regression techniques
and algorithms to enforce and promote inequality constraints and stability. Together, these
updates enable entirely new SINDy model discovery capabilities that have not been reported
in the literature, such as constrained PDE identification and ensembling with different sparse
regression optimizers.

Statement of need

Traditionally, the governing laws and equations of nature have been derived from first princi-
ples and based on rigorous experimentation and expert intuition. In the modern era, cheap and
efficient sensors have resulted in an unprecedented growth in the availability of measurement
data, opening up the opportunity to perform automated model discovery using data-driven
modeling. These data-driven approaches are also increasingly useful for processing and in-
terpreting the information in these large datasets. A number of such approaches have been
developed in recent years, including the dynamic mode decomposition (Kutz et al., 2016;
Schmid, 2010), Koopman theory (Steven L. Brunton et al., 2021), nonlinear autoregressive
algorithms (Billings, 2013), neural networks (Pathak et al., 2018; M. Raissi et al., 2019;
Vlachas et al., 2018), Gaussian process regression (Maziar Raissi et al., 2017), operator in-
ference and reduced-order modeling (Benner et al., 2015; Peherstorfer & Willcox, 2016; Qian
et al., 2020), genetic programming (Bongard & Lipson, 2007; Schmidt & Lipson, 2009), and
sparse regression (Steven L. Brunton et al., 2016). These approaches have seen many vari-
ants and improvements over the years, so data-driven modeling software must be regularly
updated to remain useful to the scientific community. The SINDy approach has experienced
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particularly rapid development, motivating this major update to aggregate these innovations
into a single open-source tool that is transparent and easy to use for non-experts or scientists
from other fields.
The original PySINDy code (de Silva et al., 2020) provided an implementation of the traditional
SINDy method (Steven L. Brunton et al., 2016), which assumes that the dynamical evolution
of a state variable q(t) ∈ Rn follows an ODE described by a function f ,

d

dt
q = f(q). (1)

SINDy approximates the dynamical system f in Eq. (1) as a sparse combination of terms from
a library of candidate basis functions θ(q) = [θ1(q), θ2(q), . . . , θp(q)]

f(q) ≈
p∑

k=1

θk(q)ξk, or equivalently d

dt
q ≈ Θ(q)Ξ, (2)

where Ξ = [ξ1, ξ2, . . . , ξp] contain the sparse coefficients. In order for this strategy to be
successful, a reasonably accurate approximation of f(q) should exist as a sparse expansion in
the span of θ. Therefore, background scientific knowledge about expected terms in f(q) can
be used to choose the library θ. To pose SINDy as a regression problem, we assume we have
a set of state measurements sampled at time steps t1, ..., tm and rearrange the data into the
data matrix Q ∈ Rm×n,

Q =


q1(t1) q2(t1) · · · qn(t1)
q1(t2) q2(t2) · · · qn(t2)

...
... . . . ...

q1(tm) q2(tm) · · · qn(tm)

 . (3)

A matrix of derivatives in time, Qt, is defined similarly and can be numerically computed from
Q. PySINDy defaults to second order finite differences for computing derivatives, although
a host of more sophisticated methods are now available, including arbitrary order finite dif-
ferences, Savitzky-Golay derivatives (i.e. polynomial-filtered derivatives), spectral derivatives
with optional filters, arbitrary order spline derivatives, and total variational derivatives (Ahnert
& Abel, 2007; Chartrand, 2011; Tibshirani & Taylor, 2011).
After Qt is obtained, Eq. (2) becomes Qt ≈ Θ(Q)Ξ and the goal of the SINDy sparse
regression problem is to choose a sparse set of coefficients Ξ that accurately fits the measured
data in Qt. We can promote sparsity in the identified coefficients via a sparse regularizer R(Ξ),
such as the l0 or l1 norm, and use a sparse regression algorithm such as SR3 (Champion et
al., 2020) to solve the resulting optimization problem,

argminΞ∥Qt −Θ(Q)Ξ∥2 +R(Ξ). (4)

The original PySINDy package was developed to identify a particular class of systems described
by Eq. (1). Recent variants of the SINDy method are available that address systems with
control inputs and model predictive control (MPC) (Fasel, Kaiser, et al., 2021; Kaiser et
al., 2018), systems with physical constraints (Kaptanoglu, Morgan, et al., 2021; Loiseau &
Brunton, 2018), implicit ODEs (Kaheman et al., 2020; Mangan et al., 2016), PDEs (Rudy
et al., 2017; Schaeffer, 2017), and weak form ODEs and PDEs (Messenger & Bortz, 2021;
Reinbold et al., 2020; Schaeffer & McCalla, 2017). Other methods, such as ensembling and
sub-sampling (Delahunt & Kutz, 2021; Maddu et al., 2019; Reinbold et al., 2021), are often
vital for making the identification of Eq. (1) more robust. In order to incorporate these
new developments and accommodate the wide variety of possible dynamical systems, we have
extended PySINDy to a more general setting and added significant new functionality. Our
code1 is thoroughly documented, contains extensive examples, and integrates a wide range of

1https://github.com/dynamicslab/pysindy
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functionality, some of which may be found in a number of other local SINDy implementations2.
In contrast to some of these existing codes, PySINDy is completely open-source, professionally-
maintained (for instance, providing unit tests and adhering to PEP8 stylistic standards), and
minimally dependent on non-standard Python packages.

New features

Given spatiotemporal data Q(x, t) ∈ Rm×n, and optional control inputs u ∈ Rm×r (note
m has been redefined here to be the product of the number of spatial measurements and
the number of time samples), PySINDy can now approximate algebraic systems of PDEs (and
corresponding weak forms) in an arbitrary number of spatial dimensions. Assuming the system
is described by a function g, we have

g(q,qt,qx,qy,qxx, ...,u) = 0. (5)

ODEs, implicit ODEs, PDEs, and other dynamical systems are subsets of Eq. (5). We can
accommodate control terms and partial derivatives in the SINDy library by adding them as
columns in Θ(Q), which becomes Θ(Q,Qt,Qx, ...,u).
In addition, we have extended PySINDy to handle more complex modeling scenarios, includ-
ing trapping SINDy for provably stable ODE models for fluids (Kaptanoglu, Callaham, et al.,
2021), models trained using multiple dynamic trajectories, and the generation of many mod-
els with sub-sampling and ensembling methods (Fasel, Kutz, et al., 2021) for cross-validation
and probabilistic system identification. In order to solve Eq. (5), PySINDy implements several
different sparse regression algorithms. Greedy sparse regression algorithms, including step-
wise sparse regression (SSR) (Boninsegna et al., 2018) and forward regression orthogonal
least squares (FROLS) (Billings, 2013), are now available. For maximally versatile candidate
libraries, the new GeneralizedLibrary class allows for tensoring, concatenating, and oth-
erwise combining many different candidate libraries, along with optionally specifying a subset
of the inputs to use for generating each of the libraries. Figure 1 illustrates the PySINDy code
structure, changes, and high-level goals for future work, and YouTube tutorials for this new
functionality are available online.
PySINDy includes extensive Jupyter notebook tutorials that demonstrate the usage of various
features of the package and reproduce nearly the entirety of the examples from the original
SINDy paper (Steven L. Brunton et al., 2016), trapping SINDy paper (Kaptanoglu, Callaham,
et al., 2021), and the PDE-FIND paper (Rudy et al., 2017). We include an extended example
for the quasiperiodic shear-driven cavity flow (Callaham et al., 2021). As a simple illustration
of the new functionality, we demonstrate how SINDy can be used to identify the Kuramoto-
Sivashinsky (KS) PDE from data. We train the model on the first 60% of the data from Rudy
et al. (Rudy et al., 2017), which in total contains 1024 spatial grid points and 251 time steps.
The KS model is identified correctly and the prediction for q̇ on the remaining testing data
indicates strong performance in Figure 2. Lastly, we provide a useful flow chart in Figure 3
so that users can make informed choices about which advanced methods are suitable for their
datasets.

2https://github.com/snagcliffs/PDE-FIND, https://github.com/eurika-kaiser/SINDY-MPC,
https://github.com/dynamicslab/SINDy-PI, https://github.com/SchatzLabGT/SymbolicRegression,
https://github.com/dynamicslab/databook_python, https://github.com/sheadan/SINDy-BVP,
https://github.com/sethhirsh/BayesianSindy, https://github.com/racdale/sindyr,
https://github.com/SciML/DataDrivenDiffEq.jl, https://github.com/MathBioCU/WSINDy_PDE,
https://github.com/pakreinbold/PDE_Discovery_Weak_Formulation, https://github.com/ZIB-IOL/CINDy
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Conclusion

The goal of the PySINDy package is to enable anyone with access to measurement data to
engage in scientific model discovery. The package is designed to be accessible to inexperienced
users, adhere to scikit-learn standards, include most of the existing SINDy variations in
the literature, and provide a large variety of functionality for more advanced users. We hope
that researchers will use and contribute to the code in the future, pushing the boundaries of
what is possible in system identification.
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Figure 1: Summary of SINDy features organized by (a) PySINDy structure and (b) functionality. (a)
Hierarchy from the sparse regression problem solved by SINDy, to the submodules of PySINDy, to the
individual optimizers, libraries, and differentiation methods implemented in the code. (b) Flow chart
for organizing the SINDy variants and functionality in the literature. Bright color boxes indicate the
features that have been implemented through this work, roughly organized by functionality. Semi-
transparent boxes indicate features that have not yet been implemented.
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Figure 2: PySINDy can now be used for PDE identification; we illustrate this new capability by
accurately capturing a set of testing data from the Kuramoto-Sivashinsky system, described by qt =
−qqx − qxx − qxxxx. The identified model is qt = −0.98qqx − 0.99qxx − 1.0qxxxx.

Figure 3: This flow chart summarizes how PySINDy users can start with a dataset and systematically
choose the proper candidate library and sparse regression optimizer that are tailored for a specific
scientific task.
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