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Summary
Non-target analysis (NTA) via chromatography coupled to high resolution mass spectrometry
(HRMS) is used to monitor and identify organic chemicals in the environment. Biotic and
abiotic processes can transform original chemicals (parents) into transformation products
(TPs). These TPs can be of equal or more concern than their parent compounds and are
therefore critical to monitor and identify in the environment (Escher & Fenner, 2011; Farré et
al., 2008), often with NTA. Given the amount of data generated by NTA, advanced automated
data processing workflows are essential. The open-source, R-based (R Core Team, 2021)
platform patRoon (Helmus, ter Laak, et al., 2021) offers automated, straightforward, flexible
and comprehensive NTA workflows.

This article describes improvements introduced in patRoon 2.0, including extensive TP screen-
ing and simultaneous processing of positive and negative HRMS data. The updated docu-
mentation and code are available via https://rickhelmus.github.io/patRoon and archived in
Helmus, Velde, et al. (2021).

Statement of need
The identification of chemicals in NTA still remains a grand challenge (Vermeulen et al., 2020);
only a small percentage of detected masses can be confidently annotated with spectral libraries
(Silva et al., 2015). The unidentified “dark matter” is partly due to TPs, motivating the
need for TP screening workflows. Reported approaches to elucidate TPs in the environment
include screening of known/predicted TPs, parent/TP classification techniques, isotope labeling
experiments and identifying expected (dis)similarities in MS data (shown in Table 1; also
reviewed in Li et al. (2021)). However, these approaches are typically designed for a single study
or available only as a stand-alone and/or commercial tool. Furthermore, few TP prediction
tools support specific pathways observed in the environment (e.g., microbial degradation),
are open-source and can be readily integrated in workflows for automated batch predictions.
patRoon 2.0 implements complementary TP screening approaches with select algorithms from
Table 1 and includes other novel functionality to provide comprehensive TP screening workflows.
The modular design of patRoon enables integration of more approaches and algorithms in the
future.
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Table 1: Overview of TP screening approaches relevant to environmental screening. Bold: imple-
mented/interfaced in patRoon.

Approach Principle Requirements Examples
TP
suspect
screening

Screen predicted
TPs

Prediction tools with
relevant pathways,
parent structures

BioTransformer
(Djoumbou-Feunang et al.,
2019), enviPath (Wicker et
al., 2015), CTS (Wolfe et al.,
2016)

Screen known TPs Knowledge base, parent
structures

PubChemLite (Schymanski,
Kondić, et al., 2021)

Metabolic
logic

Screen molecular
mass differences
from known
transformations

Known (elemental)
transformations

Schollée et al. (2015)

Mass
spectral

Cluster similar MS
data

Correlation
structural/spectral
similarity. Fragmentation
spectra for parents/TP
candidates

Schollée et al. (2017),
MetFamily (Treutler et al.,
2016), MetCirc (Naake &
Gaquerel, 2017), CluMSID
(Depke et al., 2017)

Classifica-
tion

Parent/TP
classification

In-house
statistical/computational
expertise

Schollée et al. (2015),
Brunner et al. (2019),
Schollée et al. (2021)

Since wide chemical coverage is desired with NTA and since TPs can ionize differently to
their parent, HRMS analyses are often performed using positive and negative ionization mode.
patRoon 2.0 is now capable of simultaneously processing, integrating and interpreting mixed
mode data - a functionality not available in most workflows due to complexity and long
processing times.

Further improvements to patRoon include interactive data curation and new prioritization and
identification strategies, described further below.

New functionality

Transformation product screening workflow
The patRoon 2.0 TP screening workflow starts with features (data points with unique chro-
matographic/MS information) obtained from a ‘classical’ patRoon workflow (Figure 1A). Then,
data from one or more of TP screening (B,C), MS similarity (D) and parent/TP feature classi-
fication (E) is combined to link parent and TP features into components (F). The resulting
data is then prioritized (G), corresponding features are annotated (H), and finally all data is
reported (I). All algorithm parameters are configurable, yet simplified via defaults. This enables
flexible and customizable workflows for a wide variety of applications.

TP screening uses known/predicted TP structures from parents (Figure 1B) or mass differences
of transformations using metabolic logic (Schollée et al., 2015) (C). Parents for (B) are
specified from (1) a target list, (2) results of a suspect screening to find parents by mass,
or (3) candidates of feature compound annotation (see Helmus, ter Laak, et al. (2021)).
Corresponding TP structures are then either obtained in silico with BioTransformer (Djoumbou-
Feunang et al., 2019), or through a library search from PubChem data (Kim, 2021; Krier et
al., 2022; Schymanski, Kondić, et al., 2021; Schymanski, Bolton, et al., 2021) or a custom-
made library. Metabolic logic (C), which does not depend on parent structural data, uses
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transformation reactions from Schollée et al. (2015) or a custom-made list. TP suspect
screening then matches candidate TPs with detected features by mass.

MS similarity (Figure 1D) is calculated, without a predefined parent list, from spectral match
and/or equivalence of spectral annotations. Spectral match compares MS fragment spectra
(MS/MS) with a cosine or Jaccard index similarity score (Stein & Scott, 1994). This was
largely implemented in C++ to allow efficient comparison of large numbers of spectra (typically
thousands). The calculation can be adjusted by (1) pre-treatment of spectra, e.g., with peak
count and intensity thresholds, (2) weight assignment to intensity and m/z data, and (3)
shifting TP spectra to highlight equal neutral losses (Schollée et al., 2017; Watrous et al.,
2012). Furthermore, combining matched mass peaks from shifted and non-shifted spectra
was implemented for similarity calculation of equivalent fragments and neutral losses. MS
similarity from annotation equivalence compares formulas of annotated MS/MS fragments
and neutral losses, based on additional data such as isotopic fit and spectral libraries. This
potentially increases accuracy, but requires presence of annotations for parent/TP features.

Parent/TP feature classification (Figure 1E) is typically performed by statistical analyses with R,
facilitated by the patRoon data export functionality. Fold-change calculation and visualization
with volcano plots (Cui & Churchill, 2003) was implemented in patRoon 2.0 to simplify the
usage of this common classification technique.

Figure 1: TP screening workflow in patRoon 2.0. One or more of steps B/C, D and E are used to
generate TP components by linking and grouping parent/TP features (F). The TP annotation (H)
can be enriched with data from (B).

During TP componentization (Figure 1F), each parent feature is linked with corresponding
TP features and grouped in a TP component. Data prioritization (G) can then be performed
with the subsetting functionality of patRoon and several newly implemented filters (Table 2).
Existing MetFrag (Ruttkies et al., 2016) annotation functionality was extended to include
predicted TP structures (B) to allow in silico MS/MS annotation (H) of TPs absent from
commonly used databases. The interactive reporting (I) functionality was extended to simplify
inspection of TP screening results (see Figure 2).
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Table 2: Filters to prioritize TP components.

Filter Remarks
RT direction Verifies expected relative retention time direction of each

parent/TP pair based on chemical polarities.
Structure similarity Removes TPs with high MS similarity but low structural

similarity.
Explained transformation Verifies the proposed metabolic logic transformation with

feature formula annotations.
Remove isomers Removes isomers, which can be difficult or impossible to

distinguish with MS.
Duplicates Removes duplicate TPs formed from the same parent through

different pathways.

Figure 2: Example report with TP screening results (bottom) for a selected parent (top).

Sets workflows: combining positive and negative MS ionization data
In a sets workflow, positive and negative data is automatically processed and combined
(Figure 3A). Features are obtained for each polarity, and optionally prioritized with polarity
specific conditions (e.g., minimum intensity). Then, the feature m/z values are replaced
with neutral masses calculated from adduct information (defined manually or via feature
adduct annotations), and subsequently aligned and grouped across polarities (with configurable
tolerances). Subsequent steps largely follow the patRoon 1.0 workflow (Helmus, ter Laak, et
al., 2021). Algorithms incapable of processing polarity mixed data are automatically executed
with polarity specific data, and outputs are subsequently combined. Moreover, a consensus
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for formula/compound annotations can be reached, for instance, to eliminate candidates not
found for both polarities.

Sets workflows follow a generic design, where each set is a group of analyses that demand
independent processing of MS related data (features, mass spectra etc). Therefore, sets can
also be differentiated by other MS parameters such as MS/MS fragmentation technique or
ionization source. Furthermore, the design allows future implementation of workflows with
different chromatographic methods, for instance, to simultaneously process data from different
instruments.

Figure 3: A Sets workflow with simultaneous processing of positive and negative data. Alignment of
positive/negative features can be improved with adduct annotations. The workflow continues identically
to the patRoon 1.0 workflow, and positive/negative data is automatically processed separately for
algorithms without mixed polarity support. B Default YAML configuration file used for estimation of
suspect identification levels from annotation scores, candidate rankings and other data.

Other new functionality
Other new functionality of patRoon 2.0 includes:

• Improved suspect screening
– Automatic estimation of identification levels (Schymanski et al., 2014) using a

configurable and extensible rule based approach (see Figure 3B).
– Combining suspect and non-target screening workflows.
– Merging results from different screenings.

• Improved adduct annotation
– Automatic prioritization of features with preferred adducts.
– Use of adduct annotations with formula/compound annotation.
– Support for the algorithms of cliqueMS (Senan et al., 2019) and OpenMS (Metabo

liteAdductDecharger) (Röst et al., 2016).
• Improved feature data

– Inclusion of SIRIUS (Dührkop et al., 2019), SAFD (Samanipour et al., 2019) and
KPIC2 (Ji et al., 2017) algorithms.

– Integration of MetaClean (Chetnik et al., 2020) for chromatographic peak quality
calculation and validation.
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– Calculation and prioritization with peak scores derived from aforementioned peak
qualities.

• Interactive graphical tools to inspect and curate workflow data and to train and inspect
feature classifications with MetaClean.

• Refactoring and updates of newProject() to generate code for the new functionality.
• A delete function to remove unwanted workflow data, e.g., to implement custom filters.
• More approaches to parallelize R code and support high performance computing using

the future package (Bengtsson, 2021).
• Bug fixes and improvements from user feedback.

A complete listing of all changes is outlined in the project news file.

Example workflows

Simultaneous processing of positive/negative data
Performing a sets workflow is straightforward, and requires only few additions to a patRoon 1.0

workflow.

# Load patRoon and patRoonData libraries.

library(patRoon)

library(patRoonData)

# Obtain features for positive/negative data

fListPos <- findFeatures(exampleAnalysisInfo(”positive”), ”openms”)

fListNeg <- findFeatures(exampleAnalysisInfo(”negative”), ”openms”)

# Initiate sets workflow with default (de-)protonated adducts

fListSet <- makeSet(fListPos, fListNeg, adducts = c(”[M+H]+”, ”[M-H]-”))

# Neutralize features and group across analyses and sets

fGroups <- groupFeatures(fListSet, ”openms”)

# Perform prioritization, annotation, reporting etc as a 'classical' workflow

...

TP screening
The code below demonstrates a simple TP screening workflow where (1) parents are screened,
(2) corresponding TPs are predicted with BioTransformer, (3) the TPs are screened, (4) TP
components are generated and (5) all results are reported.

# (1) Screen parents

parentSuspects <- data.frame(name = c(”Carbamazepine”, ”Benzotriazole”),

SMILES = c(”C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N”,

”C1=CC2=NNN=C2C=C1”))

fGroupsScr <- screenSuspects(fGroups, parentSuspects, adduct = ”[M+H]+”)

# (2) Predict TPs with BioTransformer

TPs <- generateTPs(”biotransformer”, parents = fGroupsScr)

# (3) Screen for the TPs and amend previous results

TPSuspects <- convertToSuspects(TPs)

fGroupsScr <- screenSuspects(fGroupsScr, TPSuspects, adduct = ”[M+H]+”,

amend = TRUE)

fGroupsScr <- filter(fGroupsScr, onlyHits = TRUE)
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# (4) Generate the TP components

componentsTP <- generateComponents(fGroupsScr, ”tp”, TPs = TPs)

# (5) Generate interactive HTML report

reportHTML(fGroupsScr, components = componentsTP)

The code for these and more advanced workflows are easily generated with the newProject()

function. The Handbook outlines more examples of typical TP screening workflows.
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