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Statement of need

The goal of this R package is to detect associations among words in word embedding spaces.
Word embeddings can capture how similar or different two words are in terms of implicit and
explicit meanings. Using the example in Collobert et al. (2011), the word vector for “XBox” is
close to that for “PlayStation”, as measured by a distance measure such as cosine distance.
Word embeddings can also be used to study associations among words that are otherwise
difficult to detect. For instance, Jing & Ahn (2021) used word embeddings to study how
Democrats and Republicans are divided along party lines about COVID-19.

The same technique can also be used to detect unwanted implicit associations, or biases. For
example, Kroon, Trilling, & Raats (2020) measure how close the word vectors for various ethnic
group names (e.g. “Dutch”, “Belgian” , and “Syrian") are to those for various nouns related
to threats (e.g. “terrorist”, “murderer”, and “gangster”). These biases in word embedding can
be understood through the implicit social cognition model of media priming (Arendt, 2013).
In this model, implicit stereotypes are defined as the “strength of the automatic association
between a group concept (e.g., minority group) and an attribute (e.g., criminal).” (Arendt,
2013, p. 832) All of these bias detection methods are based on the strength of association
between a concept (or a target) and an attribute in embedding spaces.

The importance of detecting biases in word embeddings is twofold. First, pretrained, biased
word embeddings deployed in real-life machine learning systems can pose fairness concerns
(Boyarskaya, Olteanu, & Crawford, 2020; Packer, Mitchell, Guajardo-C'espedes, & Halpern,
2018). Second, biases in word embeddings reflect the biases in the original training material.
Social scientists, communication researchers included, have exploited these methods to quantify
(implicit) media biases by extracting biases from word embeddings locally trained on large text
corpora (Knoche, Popovi'c, Lemmerich, & Strohmaier, 2019; e.g. Kroon et al., 2020; Sales,
Balby, & Veloso, 2019).

Previously, the software of these methods is only available piecemeal as the addendum of the
original papers and was implemented in different languages (Java, Python, etc.). sweater
provides several of these bias detection methods in one unified package with a consistent R
interface (R Core Team, 2021). Also, sweater provides several methods that are implemented
in C++ for speed and interfaced to R using the Rcpp package (Eddelbuettel, 2013) .

Related work

The R package cbn (https://github.com/conjugateprior/cbn) by Will Lowe provides tools for
replicating the study by Caliskan, Bryson, & Narayanan (2017). The Python package wefe

LCompared with a pure R implementation, the C++ implementation of Word Embedding Association Test
in sweater is at least 7 times faster. See the benchmark here.
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(Badilla, Bravo-Marquez, & P'erez, 2020) provides several methods for bias evaluation in a
unified (Python) interface.

Usage

In this section, | demonstrate how the package can be used to detect biases and reproduce
some published findings.

Word Embeddings

The input word embedding w is a dense m X n matrix, where m is the total size of the
vocabulary in the training corpus and n is the vector dimension size.

sweater supports input word embeddings, w, in several formats. For locally trained word
embeddings, output from the R packages word2vec (Wijffels, 2021), rsparse (Selivanov,
2020) and text2vec (Selivanov, Bickel, & Wang, 2020) can be used directly with the packages
primary functions, such as query 2. Pretrained word embeddings in the so-called “word2vec”
file format, such as those obtained online 3, can be converted to the dense numeric matrix
format required with the read_word2vec function.

The package also provides three trimmed word embeddings for experimentation: googlenews
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), glove_math (Pennington et al., 2014) ,
and small_reddit (An, Kwak, & Ahn, 2018).

Query

sweater uses the concept of a query (Badilla et al., 2020) to study associations in w and
the ST.AB notation from Brunet, Alkalay-Houlihan, Anderson, & Zemel (2019) to form a
query. A query contains two or more sets of seed words (wordsets selected by the individual
administering the test, sometimes called “seed lexicons” or “dictionaries”). Among these seed
wordsets, there should be at least one set of target words and one set of attribute words.

In the situation of bias detection, target words are words that should have no bias and usually
represent the concept one would like to probe for biases. For instance, Garg, Schiebinger,
Jurafsky, & Zou (2018) investigated the “women bias" of occupation-related words and their
target words contain “nurse”, “mathematician”, and “blacksmith"”. These words can be used
as target words because in an ideal world with no “women bias" associated with occupations,
these occupation-related words should have no gender association.

Target words are denoted as wordsets & and 7. All methods require S while T
is only required for Word Embedding Association Test (WEAT). For instance, the
study of gender stereotypes in academic pursuits by Caliskan et al. (2017) used S =
{math, algebra, geometry, calculus, equations, ...} and T = {poetry, art, dance, literature, novel, ...

In the situation of bias detection, attribute words are words that have known properties in
relation to the bias. They are denoted as wordsets .A and 5. All methods require both wordsets
except Mean Average Cosine Similarity (Manzini, Lim, Tsvetkov, & Black, 2019). For instance,
the study of gender stereotypes by Caliskan et al. (2017) used A = {he, son, his, him, ...}
and B = {she, daughter, hers, her,...}. In some applications, popular off-the-shelf sentiment
dictionaries can also be used as A and B (e.g. Sweeney & Najafian, 2020). That being said,
it is up to the researchers to select and derive these seed words in a query. However, the
selection of seed words has been shown to be the most consequential part of the entire analysis

°The vignette of text2vec provides a guide on how to locally train word embeddings using the GLoVE
algorithm (Pennington, Socher, & Manning, 2014). https://cran.r-project.org/web/packages/text2vec/vi-
gnettes/glove.html

3For example, the pretrained GLoVE word embeddings, pretrained word2vec word embeddings and pretrained
fastText word embeddings.
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(Antoniak & Mimno, 2021; Du, Fang, & Nguyen, 2021). Please read Antoniak & Mimno
(2021) for recommendations.

Supported methods

Table 1 lists all methods supported by sweater. The function query is used to conduct a
query. The function calculate_es can be used for some methods to calculate the effect size
representing the overall bias of w from the query.

Table 1: All methods supported by sweater

Method Target words Attribute words
Mean Average Cosine Similarity (Manziniet S A
al., 2019)

Relative Norm Distance (Garg et al., 2018) S A, B
Relative Negative Sentiment Bias (Sweeney & S A B
Najafian, 2020) *

SemAxis (An et al., 2018) S A, B
Normalized Association Score (Caliskan et al.,, S A, B
2017)

Embedding Coherence Test (Dev & Phillips, S A B
2019)

Word Embedding Association Test (Caliskan S, T A, B
et al., 2017)

Example 1

Relative Norm Distance (RND) (Garg et al., 2018) is calculated with two sets of attribute
words. The following analysis reproduces the calculation of “women bias” values in Garg et al.
(2018). The publicly available word2vec word embeddings trained on the Google News corpus
is used (Mikolov et al., 2013). Words such as “nurse”, “midwife” and “librarian” are more
associated with female, as indicated by the positive relative norm distance (Figure 1).

library(sweater)

S1 <- c("jantitor”, "statistician”, "midwife”, "bailiff”, "auctioneer”,
"photographer”, "geologist”, "shoemaker”, "athlete”, "cashier”,
"dancer”, "housekeeper”, "accountant”, "physicist”, "gardener”,
"dentist”, "weaver”, "blacksmith”, "psychologist”, "supervisor”,
"mathematician”, "surveyor”, "tailor”, "designer”, "economist”,
"mechanic”, "laborer”, "postmaster”, "broker”, "chemist”,
"librarian”, "attendant”, "clerical”, "musician”, "porter”,
"scientist”, "carpenter”, "sailor”, "instructor”, "sheriff”,
"pilot”, "inspector”, "mason”, "baker”, "administrator”,
"architect”, "collector”, "operator”, "surgeon”, "driver”,
"painter”, "conductor”, "nurse”, "cook”, "engineer”, "retired”,
"sales”, "lawyer”, "clergy”, "physician”, "farmer”, "clerk”,
"manager”, "guard”, "artist”, "smith”, "official”, "police”,
"doctor”, "professor”, "student”, "judge”, "teacher”, "author”,
"secretary”, "soldier”)

Al <- c("he”, "son”, "his”, "him”, "father”, "man

"male”, "brother”, "sons”, "fathers”, ”

”

, "boy”, "himself”,

men”, "boys”, "males”,

4Experimental support for quanteda dictionaries (Benoit et al., 2018) is current available for this method.
The support will be expanded to all methods later.
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"brothers”, "uncle”, "uncles”, "nephew”, "nephews”)

Bl <- c("”she”, "daughter”, "hers”, "her”, "mother”, "woman”, "girl”,
"herself”, "female”, "sister”, "daughters”, "mothers”, "women”,
"girls”, "females”, "sisters”, "aunt”, "aunts”, "niece”, "nieces”)

res_rnd_male <- query(w = googlenews, S_words = S1,

A_words = Al, B_words= B1,
method = "rnd”)
plot(res_rnd_male)
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Figure 1: Bias of words in the target wordset according to relative norm distance
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Example 2

Word Embedding Association Test (WEAT) (Caliskan et al., 2017) requires all four wordsets
of S, T, A, and B. The method is modeled after the Implicit Association Test (IAT) (Nosek,
Greenwald, & Banaji, 2005) and it measures the relative strength of S's association with A to
B against the same of 7. The effect sizes calculated from a large corpus, as shown by Caliskan
et al. (2017), are comparable to the published IAT effect sizes obtained from volunteers.

In this example, the publicly available GLoVE embeddings made available by the original
Stanford Team (Pennington et al., 2014) were used. In the following example, the calculation
of “Math vs Arts” gender bias in Caliskan et al. (2017) is reproduced. In this example, the
positive effect size indicates the words in the wordset S are more associated with males than
are the words in wordset 7.

S2 <- c(”math”, "algebra”, "geometry”, "calculus”, "equations”,
"computation”, "numbers”, "addition”)
T2 <- c("poetry”, "art”, "dance”, "literature”, "novel”, "symphony”,

"drama”, "sculpture”)
A2 <- c("male”, "man”, "boy”, "brother”, "he”, "him”, "his”, "son”)
B2 <- c("female”, "woman”, "girl”, "sister”, "she”, "her”, "hers”,
"daughter”)
sw <- query(w = glove_math,
S_words = S2, T_words = T2,

A words = A2, B_words = B2)
sw
##
## -- sweater object -------"-- bbb i oo
## Test type: weat
## Effect size: 1.055015
##
## -- Functions ---—----—------ -
## * “calculate_es() : Calculate effect size

## * “weat_resampling()’: Conduct statistical test

The statistical significance of the effect size can be evaluated using the function weat_resamp
ling.

weat_resampling(sw)

##

## Resampling approximation of the exact test in Caliskan et al. (2017)
##

## data: sw

## bilas = 0.024865, p-value = 0.0171

## alternative hypothesis: true bias is greater than 7.245425e-05

## sample estimates:

# bias

## 0.02486533
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