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Summary
A major part of computational materials science and computational chemistry concerns calcu-
lations of total energy differences and electronic excitations of poly-atomic systems. Currently,
the most prevalent method for such computations is density-functional theory (Hohenberg &
Kohn, 1964) (DFT) based on the Kohn-Sham formalism (Kohn & Sham, 1965) (KS) together
with one of the numerous exchange-correlation (xc) approximations (Civalleri et al., 2012;
Sousa et al., 2007). The trade-off between comparably low computational cost and often
reliably accurate results render it the dominant method in the field. Often, however, the
accuracy of the xc approximations is not sufficent and uncertain, in particular when electronic
correlations play a decisive role (Savin & Johnson, 2014; Zhang et al., 2016; Zhang & Grüneis,
2019).
Coupled-cluster (CC) methods (Čı́žek, 1966), while substantially more computationally ex-
pensive have proven to be significantly more accurate and reliable, at least for molecules
and non-metallic solids. On these grounds, they allow for a systematic accuracy benchmark
of other methods. Indeed, in molecular quantum chemistry the CC approach is considered
the gold standard for a theoretical description of binding energies and electronic properties
(Chan, 2019). It is typically used (at least) for benchmark studies. While the original CC
methodology allows one to calculate the ground-state total energy of a system, it is also
possible to compute properties of excited states using the equation-of-motion formalism of
CC (EOM-CC) with comparable accuracy and reliability (Stanton & Bartlett, 1993). The
conventional CC approach is limited, however, to systems with about 50 electrons (Feller &
Dixon, 2001; Gyevi-Nagy et al., 2019). By employing approximations, which exploit the locality
of electronic correlation, materials with a couple of hundreds of electrons have been calculated
via local natural orbital CC (LNO-CC) (Nagy & Kállay, 2019) and explicitly correlated pair
natural orbital CC (PNO-CC-F12) (Ma & Werner, 2021). The extension of CC to periodic
systems (Hirata et al., 2004) has been explored to a great degree by the research groups of
Andreas Grüneis and Garnet Chan.

In the work of Andreas Grüneis et al. the periodic formulation of CC was, for example, applied
to study the adsorption behavior and surface chemistry of 2-dimensional materials including
graphene (Al-Hamdani et al., 2017), boron nitride (Brandenburg et al., 2019) and surfaces
(Tsatsoulis et al., 2018). These studies showed that CC yields consistently accurate adsorption
energies and reaction energetics. The work of the groups of Garnet Chan and Timothy
Berkelbach addressed the electronic properties of 2- and 3-dimensional materials. By applying
the periodic equation-of-motion (EOM) CC formalism, band paths, optical spectra and band
gaps of various materials (diamond, silicon, nickel oxide and others)
have been investigated (Gao et al., 2020; McClain et al., 2017; Wang & Berkelbach, 2020).
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It is important to note that all the periodic CC calculations published so far utilized pseudopo-
tentials (Kresse & Joubert, 1999) to avoid explicit treatment of core electrons. One notable
distinction between the works of the two groups is the type of basis set used. While the CC4S
code of Andreas Grüneis et al. uses a plane-wave basis, the group of Garnet Chan performs
their calculations using gaussian basis sets (McClain et al., 2017; Sun et al., 2018). Localized
atom-centred basis sets like gaussian orbitals or numerical atomic orbitals (NAO) (Blum et al.,
2009) can potentially decrease the computational cost. This is mostly due to the locality of
the basis functions and their improved description of the atomic core region, which decreases
the number of basis functions necessary for accurate computations of the system.

This paper describes a generalizable interface, called CC-aims, to the Coupled-Cluster for

solids code (CC4S) developed by Andreas Grüneis et al. The interface is formulated in a
general way and demonstrated here for the all-electron FHI-aims code (Blum et al., 2009). A
generalization to other codes with atom-centered basis functions should be straightforward.
This interface expands the power of electronic-structure theory codes to a variety of corre-
lated methods. These include Møller-Plesset perturbation theory to second order (MP2),
coupled-cluster theory including single and double excitations (CCSD) and CCSD including
the perturbative treatment of triple excitations (CCSD(T)). Implementations of EOM-CC for
neutral (EE-EOM-CC) and charged (IP-EOM-CC/EA-EOM-CC) excitations are currently under
development. CC-aims can be used directly by any software package which uses a localized
basis set and employs a resolution-of-identity scheme (Ren et al., 2012) (RI). This also includes
local RI schemes, which expand products of atomic orbital basis function (AOs) pairs only
using auxiliary basis functions that are localized on either of the atoms of the AOs. Primary
examples for this family of localized schemes is the RI-LVL approach employed by FHI-aims
(Ihrig et al., 2015), ADF (Förster & Visscher, 2020) and ABACUS (Lin et al., 2020) and
the the pair-atomic RI (PARI) (Merlot et al., 2013). In addition to that, more conventional
non-local schemes, which are predominantly used in molecular calculations, like RI-V (Whitten,
1973) and RI-SVS (Feyereisen et al., 1993) are recognized by CC-aims as well.

Statement of need
The CC-aims interface constitutes a practical alternative to each ab initio code implementing
its own set of quantum chemistry wave function methods. Instead, CC4S and, by extension,
CC-aims merely requires the ab initio code to provide a number of input quantities, most of
which are generated during a Hartree-Fock or a Kohn-Sham calculation anyway. In return, the
interfaced code gains access to an ever-growing number of wave function methods. The only
input quantity of CC4S that is not typically calculated in quantum chemistry or electronic
structure codes, but which is computed by CC-aims, is the Coulomb vertex (Hummel et al.,
2017). The Coulomb vertex, a rank-3 tensor, constitutes a memory-saving approximation
of the rank-4 tensor of Coulomb integrals. The storage of Coulomb integrals is the major
memory bottleneck in CC calculations, so that the utilization of the Coulomb vertex expands
the scope of system sizes which can be calculated. While in the case of localized orbitals
the herein presented CC-aims interface can be used, in the case of plane-wave basis sets a
different approach to calculate the Coulomb vertex has to be taken, which is described in
(Hummel et al., 2017). For quantum chemistry programs employing a localized basis, an
RI scheme is also needed (and thus may need to be implemented). CC-aims allows software
packages which either lack certain quantum chemistry algorithms completely or which only
offer insufficiently optimized implementations easy access to these methods. Interfaces like
CC-aims will substantially accelerate the research done in areas where DFT is too inaccurate or
too unreliable, by allowing many electronic structure codes to participate in these investigations
without the time-consuming effort of implementing correlated wave-function methods.
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