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Summary and statement of need
Since ancient times humans have strived to describe environmental processes related to water
(Angelakis et al., 2012; Biswas, 1970). Throughout this history, hydrologists built various
process-based prediction models that simulate processes from soil moisture to streamflow
generation (a collection of historical references can be found in Loague (2010)). More recently,
Deep Learning models have emerged as extremely powerful and more accurate alternatives
to these traditional modeling approaches (Gauch et al., 2021; Klotz et al., 2021; Kratzert,
Klotz, Shalev, et al., 2019; Kratzert, Klotz, Herrnegger, et al., 2019; Lees et al., 2021). For
hydrologists, embracing this new data-driven paradigm is challenging (Beven, 2020; Nearing et
al., 2021): not only are the models conceptually different, but they are also built, optimized,
and evaluated with different strategies and toolsets.

NeuralHydrology is a Python library based on PyTorch (Paszke et al., 2019) that is designed
to build, apply, and experiment with Deep Learning models with a strong focus on hydrological
applications. Originally designed for our internal research needs, the library was generalized and
open-sourced to allow anyone to experiment with Deep Learning models as easily as possible:
pre-built models and data loaders allow for quick experiments, yet the framework is also easily
extensible to new models, data sets, loss functions, or metrics to suit more advanced use-cases.

NeuralHydrology is targeted towards students and researchers who want to experiment with
Deep Learning models for rainfall-runoff modeling or other problems related to hydrology. As
such, the library was designed to be picked up by beginners with little programming experience.
For example, NeuralHydrology allows to train state-of-the-art rainfall-runoff models by only
editing a config file and without touching a single line of code.

Functionality
NeuralHydrology is available on GitHub and can be installed via the pip package manager or by
cloning the repository. The documentation provides a detailed explanation of the installation
steps.

Basic Concepts
At the core of each experiment with NeuralHydrology is a YAML configuration file that
specifies input and target data, model architecture, metrics to calculate, as well as training,
validation, and test periods, along with some more technical settings that are described in the
documentation. The configuration file also specifies whether the experiment is conducted on a
CPU or a GPU—for Deep Learning experiments, the latter can drastically improve runtimes.

The library can be used in two ways: First, via the command line interface (CLI). After
installation via pip, the package registers several commands that can be executed via the
command line, most importantly nh_run. This is the main entrypoint to start training and
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validation of models. Second, via the Python API. This option allows for more sophisticated
use-cases, as users can define more precisely which parts of the framework they intend to use.
There exist methods to conduct a full training or evaluation just like it is possible through the
CLI, but it is equally possible to only use specific models, metrics, or data sets in the context
of one’s own code. NeuralHydrology also provides scripts for job scheduling to run multiple
experiments in parallel on one or more GPUs.

Lastly, the modular design of the library allows contributors not only to extend the functionality
by adding new models, data sets, or metrics, but also to run comparative experiments: for
instance, one can compare different models in the same setting or one model on different data
sets.

Example use-cases
The most basic use-case for the NeuralHydrology library is basic rainfall–runoff modeling as
described in Kratzert et al. (2018) and Kratzert, Klotz, Shalev, et al. (2019), where we train a
machine learning model on meteorological data and discharge observations from a set of basins
(a process also known as calibration) and subsequently apply the model to a different time
period, either to evaluate its goodness-of-fit, or to actually generate predictions for practical
use. Since the experiment configuration is highly flexible, users can define which inputs they
want to ingest into the model (e.g., whether discharge from previous time steps should be an
input variable) and which variable(s) they want to predict. Users can easily train an ensemble
of multiple models and average their predictions, which often greatly enhances the overall
accuracy (see, e.g., Kratzert, Klotz, Shalev, et al. (2019) in the context of LSTM-based
rainfall-runoff modeling).

Beyond this most basic application, NeuralHydrology also supports prediction in ungauged
basins, where a model is trained on one set of basins and subsequently applied to another set
of basins for which no discharge observations exist (see, e.g., Kratzert, Klotz, Herrnegger, et
al. (2019)). Lastly, NeuralHydrology also includes different options to train neural networks
for uncertainty estimation, where the model does not only regress a single target value (e.g.,
discharge) per time step, but rather outputs probability distributions for each target variable
(for details, see Klotz et al. (2021)).
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