
Kamodo: A functional API for space weather models and
data
Asher Pembroke1, Darren DeZeeuw2,3, Lutz Rastaetter2, Rebecca
Ringuette4,2, Oliver Gerland5, Dhruv Patel5, and Michael Contreras5

1 Asher Pembroke, DBA 2 Community Coordinated Modeling Center, NASA GSFC 3 Catholic
University of America 4 ADNET Systems Inc. 5 Ensemble Government Services

DOI: 10.21105/joss.04053

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey

Reviewers:
• @dstansby
• @samaloney

Submitted: 29 November 2021
Published: 14 July 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Kamodo is a functional application programing interface (API) for scientific models and data.
In Kamodo, all scientific resources are registered as symbolic fields which are mapped to
model and data interpolators or algebraic expressions. Kamodo performs function composition
and employs a unit conversion system that mimics hand-written notation: units are declared
in bracket notation and conversion factors are automatically inserted into user expressions.
Kamodo includes a LaTeX interface, automated plots, and a browser-based dashboard interface
suitable for interactive data exploration. Kamodo’s json API provides context-dependent
queries and allows compositions of models and data hosted in separate docker containers.
Kamodo is built primarily on sympy (Meurer et al., 2017) and plotly (Plotly Technologies Inc.,
2015). While Kamodo was designed to solve the cross-disciplinary challenges of the space
weather community, it is general enough to be applied in other fields of study.

Statement of need
Space weather models and data employ a wide variety of specialized formats, data structures,
and interfaces tailored for the needs of domain experts. However, this specialization is also an
impediment to cross-disciplinary research. For example, data-model comparisons often require
knowledge of multiple data structures and observational data formats. Even when mature
APIs are available, proficiency in programing languages such as Python is necessary before
progress may be made. This further complicates the transition from research to operations
in space weather forecasting and mitigation, where many disparate data sources and models
must be presented together in a clear and actionable manner. Such complexity represents
a high barrier to entry when introducing the field of space weather to newcomers at space
weather workshops, where much of the student’s time is spent installing and learning how to
use prerequisite software. Several attempts have been made to unify all existing space weather
resources around common data standards, but have met with limited success. In particular,
introducing and leveraging a common data standard for space weather models was the primary
goal of the Kameleon software suite, a predecessor to Kamodo developed between 1999-2011 at
the Community Coordinated Modeling Center, NASA GSFC (Maddox et al., 2013). Kameleon
consisted of a set of tools for converting raw simulation output into standardized HDF or CDF
format with additional metadata specific to space weather modeling (scientific units, array
structure, coordinate systems, and citation information) as well as interpolation APIs targeting
several languages (C, C++, Fortran, Java, and Python). Due to the complexity of space
weather modeling techniques, these interpolators were tailored for specific models and had
to be written by the Kameleon developers themselves. This created a bottleneck in the time
to onboard new simulations, and only a handful of models could be supported. In addition,
interpolation of observational data fell outside the scope of Kameleon’s design requirements,

Pembroke et al. (2022). Kamodo: A functional API for space weather models and data. Journal of Open Source Software, 7(75), 4053.
https://doi.org/10.21105/joss.04053.

1

https://doi.org/10.21105/joss.04053
https://github.com/openjournals/joss-reviews/issues/4053
https://github.com/EnsembleGovServices/kamodo-core
https://doi.org/10.5281/zenodo.6773395
https://dfm.io
https://orcid.org/0000-0002-9328-5652
https://github.com/dstansby
https://github.com/samaloney
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04053

and additional tooling was required for metrics and validation. Furthermore, the difficulty
in installing the prerequisite libraries meant that only a few users could take advantage of
Kameleon’s powerful interpolation techniques. Often, scientific users either developed their
own pipelines for analysis or simply relied on CCMC’s static plots available over the web. Our
experience with Kameleon and its limitations were a strong motivating factor for Kamodo’s
functional design.

Kamodo all but eliminates the barrier to entry for accessing space weather resources by exposing
all scientifically relevant parameters in a functional manner. Kamodo is an ideal tool in the
scientist’s workflow, because many problems in space weather analysis, such as field line tracing,
coordinate transformation, and interpolation, may be posed in terms of function compositions.
The underlying implementation of these functions are left to the model and data access libraries.
This allows Kamodo to build on existing standards and APIs without requiring programing
expertise on the part of the end user. Kamodo is expressive enough to meet the needs of most
scientists, educators, and space weather forecasters, and Kamodo containers enable a rapidly
growing ecosystem of interoperable space weather resources.

Usage

Kamodo Base Class
Kamodo’s base class manages the registration of functionalized resources. As an example, here
is how one might register the 500th-order approximation of the non-differentiable Weierstrass
function (Weierstrass, 1895).

from kamodo import Kamodo, kamodofy

import numpy as np

@kamodofy(

equation=r”\sum_{n=0}^{500} (1/2)^n cos(3^n \pi x)”,

citation='Weierstrass, K. (1872). Uber continuirliche functionen eines '

'reellen arguments, die fur keinen werth des letzteren einen '

'bestimmten differentialquotienten besitzen, Akademievortrag. '

'Math. Werke von Karl Weierstrass, Vol. 2, 71-74, Mayer & Mueller (1895).'

)

def weierstrass(x = np.linspace(-2, 2, 1000)):

'''

Weierstrass function (continuous and non-differentiable)

https://en.wikipedia.org/wiki/Weierstrass_function

'''

nmax = 500

n = np.arange(nmax)

xx, nn = np.meshgrid(x, n)

ww = (.5)**nn * np.cos(3**nn*np.pi*xx)

return ww.sum(axis=0)

k = Kamodo(W=weierstrass)

When run in a jupyter notebook, the latex representation of the above function is shown:

W (x) =

500∑
n=0

(1/2)ncos(3nπx) (1)

Pembroke et al. (2022). Kamodo: A functional API for space weather models and data. Journal of Open Source Software, 7(75), 4053.
https://doi.org/10.21105/joss.04053.

2

https://doi.org/10.21105/joss.04053

This function can be queried at any point within its domain:

k.W(0.25)

array([0.47140452])

Kamodo’s plotting routines can automatically visualize this function at multiple zoom levels:

k.plot('W')

The result of the above command is shown in Figure 1. This exemplifies Kamodo’s ability to
work with highly resolved datasets through function inspection.

Figure 1: Auto-generated plot of the Weierstrass function.

Kamodo Subclasses
The Kamodo base class may be subclassed when third-packages are required. For example, the
pysatKamodo subclass preregisters interpolating functions for Pysat (Stoneback et al., 2019)
Instruments:

from pysat_kamodo.nasa import Pysat_Kamodo

kcnofs = Pysat_Kamodo(

Pysat_Kamodo allows string dates

'2009, 1, 1',

pysat mission name (C/NOFS)

platform = 'cnofs',

pysat instrument suite (Vector Electric Field Investigation)

name='vefi',

pysat type of observation (here: DC magnetic fields)

tag='dc_b',

)

kcnofs['B'] = '(B_north**2+B_up**2+B_west**2)**.5' # a derived variable

Here is how the kcnofs instance appears in a jupyter notebook:

Bnorth (t)[nT] = λ(t) (2)

Pembroke et al. (2022). Kamodo: A functional API for space weather models and data. Journal of Open Source Software, 7(75), 4053.
https://doi.org/10.21105/joss.04053.

3

https://doi.org/10.21105/joss.04053

Bup (t)[nT] = λ(t) (3)

Bwest (t)[nT] = λ(t) (4)

Bflag (t) = λ(t) (5)

BIGRFnorth (t)[nT] = λ(t) (6)

BIGRFup (t)[nT] = λ(t) (7)

BIGRFwest (t)[nT] = λ(t) (8)

latitude (t)[degrees] = λ(t) (9)

longitude (t)[degrees] = λ(t) (10)

altitude (t)[km] = λ(t) (11)

dBzon (t)[nT] = λ(t) (12)

dBmer (t)[nT] = λ(t) (13)

dBpar (t)[nT] = λ(t) (14)

B(t)[nT] =

√
Bnorth

2 (t) + Bup
2 (t) + Bwest

2 (t) (15)

Units are explicitly shown on the left hand side, while the right hand side of these expressions
represent interpolating functions ready for evaluation:

kcnofs.B(pd.DatetimeIndex(['2009-01-01 00:00:03','2009-01-01 00:00:05']))

2009-01-01 00:00:03 19023.052734

2009-01-01 00:00:05 19012.949219

dtype: float32

Here, the function B(t) returns the result of a variable derived from preregistered variables as
a pandas series object. However, kamodo itself does not require functions to utilize a specific
data type, provided that the datatype supports algebraic operations.

Kamodo can auto-generate plots using function inspection:

kcnofs.plot('B_up')

Figure 2: Auto-generated plot of CNOFs Vefi instrument.

Pembroke et al. (2022). Kamodo: A functional API for space weather models and data. Journal of Open Source Software, 7(75), 4053.
https://doi.org/10.21105/joss.04053.

4

https://doi.org/10.21105/joss.04053

The result of the above command is shown in Figure 2. To accomplish this, Kamodo analyzes
the structure of inputs and outputs of B_up and selects an appropriate plot type from the
Kamodo plotting module.

Citation information for the above plot may be generated from the meta property of the
registered function:

kcnofs.B_up.meta['citation']

which returns references for the C/NOFS platform (Beaujardière, 2004) and VEFI instrument
(Pfaff et al., 2010).

Related Projects
Kamodo is designed for compatibility with python-in-heliophysics (Ware et al., 2019) packages,
such as PlasmaPy (PlasmaPy Community et al., 2020) and PySat (Stoneback et al., 2019,
2018). This is accomplished through Kamodo subclasses, which are responsible for registering
each scientifically relevant variable with an interpolating function. Metadata describing the
function’s units and other supporting documentation (citation, latex formatting, etc) may be
provisioned by way of the @kamodofy decorator.

The PysatKamodo (Pembroke, 2021) interface is made available in a separate git repository.
Readers for various space weather models and data sources are under development by the
Community Coordinated Modling Center and are hosted in their official NASA repository
(Pembroke et al., 2021).

Kamodo’s unit system is built on SymPy (Meurer et al., 2017) and shares many of the unit
conversion capabilities of Astropy (Astropy Collaboration et al., 2018, 2013) with two key
differences: Kamodo uses an explicit unit conversion system, where units are declared during
function registration and appropriate conversion factors are automatically inserted on the
right-hand-side of final expressions, which permits back-of-the-envelope validation. Second,
units are treated as function metadata, so the types returned by functions need only support
algebraic manipulation via libraries such as NumPy (Harris et al., 2020) or Pandas (Pandas
Development Team, 2020). Output from kamodo-registered functions may still be cast into
other unit systems that require a type, such as Astropy (Astropy Collaboration et al., 2018,
2013) and Pint (Chéron et al., 2021).

Kamodo can utilize some of the capabilities of raw data APIs such as HAPI, and a HAPI
kamodo subclass is maintained in the ccmc readers repository (Pembroke et al., 2021). However,
Kamodo also provides an API for purely functional data access, which allows users to specify
positions or times for which interpolated values should be returned. To that end, a prototype
for functional REST api (Fielding, 2000) is available (Pembroke & Patel, 2021), as well as an
RPC api (Nelson, 2020) for direct access from other programing languages.

Kamodo container services may be built on other containerized offerings. Containerization
allows dependency conflicts to be avoided through isolated install environments. Kamodo
extends the capabilities of space weather resource containers by allowing them to be composed
together via the KamodoClient, which acts as a proxy for the containerized resource running
the Kamodo RPC API.

Acknowledgements
Development of Kamodo was initiated by the Community Coordinated Modeling Center, with
funding provided by Catholic University of America under the NSF Division of Atmospheric
and Geospace Sciences, Grant No 1503389. Continued support for Kamodo is provided by
Ensemble Government Services, LTD. via NASA Small Business Innovation Research (SBIR)

Pembroke et al. (2022). Kamodo: A functional API for space weather models and data. Journal of Open Source Software, 7(75), 4053.
https://doi.org/10.21105/joss.04053.

5

https://doi.org/10.21105/joss.04053

Phase I/II, grant No 80NSSC20C0290, 80NSSC21C0585, resp. Additional support is provided
by NASA’s Heliophysics Data and Model Consortium.

The authors are thankful for the advice and support of Nicholas Gross, Katherine Garcia-Sage,
and Richard Mullinex.

References
Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., Lim, P. L.,

Crawford, S. M., Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A.,
VanderPlas, J. T., Bradley, L. D., Pérez-Suárez, D., de Val-Borro, M., Aldcroft, T. L.,
Cruz, K. L., Robitaille, T. P., Tollerud, E. J., … Astropy Contributors. (2018). The Astropy
Project: Building an Open-science Project and Status of the v2.0 Core Package. The
Astronomical Journal, 156(3), 123. https://doi.org/10.3847/1538-3881/aabc4f

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray,
E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Conley,
A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M., Nair,
P. H., … Streicher, O. (2013). Astropy: A community Python package for astronomy.
Astronomy & Astrophysics, 558, A33. https://doi.org/10.1051/0004-6361/201322068

Beaujardière, O. (2004). C/NOFS: A mission to forecast scintillations. Journal of Atmospheric
and Solar-Terrestrial Physics, 66, 1573–1591. https://doi.org/10.1016/j.jastp.2004.07.030

Chéron, J., Grecco, H. E., & et al. (2021). Pint. In GitHub repository. https://github.com/
hgrecco/pint; GitHub.

Fielding, R. T. (2000). REST: Architectural styles and the design of network-based software
architectures. Doctoral Dissertation, University of California.

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Maddox, M. M., Berrios, D. H., Rastaetter, L., & Pembroke, A. (2013). Kameleon software
suite (Version 6.1.0) [Computer software]. https://ccmc.gsfc.nasa.gov/Kameleon/Overview.
html

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., … Scopatz, A.
(2017). SymPy: Symbolic computing in Python. PeerJ Computer Science, 3, e103.
https://doi.org/10.7717/peerj-cs.103

Nelson, B. J. (2020). Remote procedure call, 1981. PARC CSL-81-9, Xerox Palo Alto Research
Center, Palo Alto, CA.

Pandas Development Team. (2020). pandas-dev/pandas: Pandas (Version 1.3.4) [Computer
software]. Zenodo. https://doi.org/10.5281/zenodo.3509134

Pembroke, A. (2021). PysatKamodo. In Github repository. https://github.com/pysat/
pysatKamodo; GitHub.

Pembroke, A., DeZeeuw, D., Rastaetter, L., & Ringuette, R. (2021). nasaKamodo. In Github
repository. https://github.com/nasa/Kamodo; GitHub.

Pembroke, A., & Patel, D. (2021). Kamodo-core. In Github repository. https://github.com/
EnsembleGovServices/kamodo-core; GitHub.

Pembroke et al. (2022). Kamodo: A functional API for space weather models and data. Journal of Open Source Software, 7(75), 4053.
https://doi.org/10.21105/joss.04053.

6

https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1016/j.jastp.2004.07.030
https://github.com/hgrecco/pint
https://github.com/hgrecco/pint
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://ccmc.gsfc.nasa.gov/Kameleon/Overview.html
https://ccmc.gsfc.nasa.gov/Kameleon/Overview.html
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.5281/zenodo.3509134
https://github.com/pysat/pysatKamodo
https://github.com/pysat/pysatKamodo
https://github.com/nasa/Kamodo
https://github.com/EnsembleGovServices/kamodo-core
https://github.com/EnsembleGovServices/kamodo-core
https://doi.org/10.21105/joss.04053

Pfaff, R., Rowland, D., Freudenreich, H., Bromund, K., Le, G., Acuña, M., Klenzing, J.,
Liebrecht, C., Martin, S., Burke, W. J., Maynard, N. C., Hunton, D. E., Roddy, P. A.,
Ballenthin, J. O., & Wilson, G. R. (2010). Observations of DC electric fields in the
low-latitude ionosphere and their variations with local time, longitude, and plasma density
during extreme solar minimum. Journal of Geophysical Research: Space Physics, 115(A12).
https://doi.org/10.1029/2010JA016023

PlasmaPy Community, Everson, E., Stańczak, D., Murphy, N. A., Kozlowski, P. M., Malhotra,
R., Langendorf, S. J., Leonard, A. J., Stansby, D., Haggerty, C. C., Mumford, S. J., Beckers,
J. P., Bedmutha, M. S., Bergeron, J., Bessi, L., Bryant, K., Carroll, S., Chambers, S.,
Chattopadhyay, A., … Skinner, C. (2020). PlasmaPy (Version 0.5.0) [Computer software].
Zenodo. https://doi.org/10.5281/zenodo.4313063

Plotly Technologies Inc. (2015). Collaborative data science. Plotly Technologies Inc. https:
//plot.ly

Stoneback, R. A., Burrell, A. G., Klenzing, J., & Depew, M. D. (2018). PYSAT: Python
Satellite Data Analysis Toolkit. Journal of Geophysical Research: Space Physics, 123(6),
5271–5283. https://doi.org/10.1029/2018JA025297

Stoneback, R. A., Klenzing, J. H., Burrell, A. G., Spence, C., Depew, M., Hargrave, N., Bose,
V. von, Luis, S., & Iyer, G. (2019). Python satellite data analysis toolkit (pysat) vX.y.z.
https://doi.org/10.5281/zenodo.1199703

Ware, A., Barnum, J., Candey, R., Cecconi, B., Christe, S., Faden, J., Grimes, E., Harris, B.,
Harter, B., Kilcommons, L., Loh, A., McGuire, R., Mumford, S., Narock, A., Nguyen, Q. N.,
Niehof, J., Maldonado, A., Murphy, N., Panneton, R., … Woodraska, D. (2019). Python
in heliophysics community meeting. Zenodo. https://doi.org/10.5281/zenodo.2537188

Weierstrass, K. (1895). Über continuirliche functionen eines reellen arguments, die für keinen
werth des letzteren einen bestimmten differentialquotienten besitzen (on continuous func-
tions of a real argument which possess a definite derivative for no value of the argument).
In Mathematische Werke von Karl Weierstrass (Vol. 2, pp. 71–74). Mayer & Mueller.

Pembroke et al. (2022). Kamodo: A functional API for space weather models and data. Journal of Open Source Software, 7(75), 4053.
https://doi.org/10.21105/joss.04053.

7

https://doi.org/10.1029/2010JA016023
https://doi.org/10.5281/zenodo.4313063
https://plot.ly
https://plot.ly
https://doi.org/10.1029/2018JA025297
https://doi.org/10.5281/zenodo.1199703
https://doi.org/10.5281/zenodo.2537188
https://doi.org/10.21105/joss.04053

	Summary
	Statement of need
	Usage
	Kamodo Base Class
	Kamodo Subclasses

	Related Projects
	Acknowledgements
	References

