
The AutoActive Research Environment
Sigurd Albrektsen1, Kasper Gade Bøtker Rasmussen1¶, Anders E.
Liverud1, Steffen Dalgard1, Jakob Høgenes1, Silje Ekroll Jahren1, Jan
Kocbach2, and Trine M. Seeberg1,2

1 Smart Sensor Systems, SINTEF Digital, Trondheim, Norway 2 Centre for Elite Sports Research,
Department of Neuromedicine and Movement Science, Norwegian University of Science and
Technology, Trondheim, Norway ¶ Corresponding author

DOI: 10.21105/joss.04061

Software
• Review
• Repository
• Archive

Editor: Prashant K Jha
Reviewers:

• @AustinTSchaffer
• @erik-whiting

Submitted: 28 September 2021
Published: 20 April 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Statement of Need
There is an ever-growing variety of biomedical sensors and wearables that aim to monitor
activity, biomarkers, and vital signs. However, to fully understand the physical and physiological
factors of the underlying processes, multiple sensors are often needed in combination with videos.
Software for combining, synchronizing, organising and processing sensor data from multiple
sensors and videos is therefore essential. Even though multiple open-source solutions like
Pyomeca (Martinez et al., 2020) and ALPS (Musmann et al., 2020) exist, existing open source
software solutions are limited. None provide the possibility to combine sensor data and videos,
few provide tools for synchronising sensors, and none provide tools for synchronising sensors
with videos. Furthermore, many solutions rely on cloud storage, which is often unacceptable in
biomedical research. There also exist solutions which are not limited in functionality and solve
many of the same problems as ARE, such as SensiML Analytics Toolkit (SensiML, cited Jan
2022) and Pasco Capstone Software (scientific, cited Jan 2022), but these are not open source.
To meet these limitations, we have developed the AutoActive Research Environment (ARE).
The idea of ARE is to create a generic open source methodological framework, especially but
not exlusively for the biomedical and sport domains, supporting a wide range of sensors and
tools that aid the development, optimization, and evaluation of algorithms.

Summary
ARE consists of three different software modules; ActivityPresenter, a Matlab toolbox, and a
Python toolbox. ActivityPresenter is created to simplify the process of visualising, synchronising,
and organising data, such as sensor data and videos from multiple sources, while the Matlab
and Python toolboxes allow researchers to easily process data. Furthermore, a file format
called AutoActiveZip (aaz) was created to store data and metadata in an organized manner.
This format is a structured archive which contains immutable data structures and where the
information within can be accessed without the use of temporary files that needs to be cleaned
up. This ensures that sensitive data are not inadvertently left in temporary folders in case of
program failure. The format allows the strengths of ActivityPresenter, such as synchronising
data from multiple sources, and visualising videos and sensor data side by side to be combined
with algorithms developed in Matlab and Python.

Albrektsen et al. (2022). The AutoActive Research Environment. Journal of Open Source Software, 7(72), 4061. https://doi.org/10.21105/
joss.04061.

1

https://doi.org/10.21105/joss.04061
https://github.com/openjournals/joss-reviews/issues/4061
https://github.com/SINTEF/AutoActive-ActivityPresenter.git
https://doi.org/10.5281/zenodo.6393705
https://prashjha.github.io/
https://github.com/AustinTSchaffer
https://github.com/erik-whiting
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04061
https://doi.org/10.21105/joss.04061


Overview of the AutoActive Research Environment

ActivityPresenter
ActivityPresenter is an easy-to-use software with a graphical user interface that can visualise,
synchronise, and organise data from sensors and cameras. It is developed using the Xamarin
framework which simplifies the task of supporting multiple operating systems, as almost all
the code for both the GUI and data handling can be shared for all targeted platforms. An
example of ActivityPresenter can be seen in Figure 1 where we visualise synchronised video
with gyroscope and heart rate data.

Figure 1: Example of ActivityPresenter.

ActivityPresenter makes it possible to import data from an aaz file, files generated by sensors
such as the Physiolog 5 sensor (Gait Up SA, Lausanne, Switzerland), Catapult Optimeye
S5 (Catapult Sports, Melbourne, Australia) and tcx files from Garmin (Garmin International
Inc, Kansas, USA) as well as common data types such as csv and xlsx and all video formats
acceptable by Microsoft Windows. Furthermore, it is easy to extend accepted file types as the
architecture is plugin-based. The application architecture can be seen in Figure 2. Data can
be loaded from an aaz file or from a custom data importer onto the databus. Data on the
databus can be used to create tree views to get an overview of the datasets, create figures
to view data, or synchronise data coming from different sources. When the data has been
synchronised, the changes are written back to the databus. The data on the databus can also
be reorganised and written to a new aaz file. When data is made available on the databus,
data is not necessarily loaded into memory. If data comes from an aaz file, data is first read
into memory when accessed. This typically happens when the data is selected from the data
tree view for visualization. Hereby, we minimise the memory footprint of ActivityPresenter and
make it possible to view parts of large sessions on devices with limited resources.

Albrektsen et al. (2022). The AutoActive Research Environment. Journal of Open Source Software, 7(72), 4061. https://doi.org/10.21105/
joss.04061.

2

https://doi.org/10.21105/joss.04061
https://doi.org/10.21105/joss.04061


Figure 2: Architecture of ActivityPresenter.

Data Handling
Session

The concept of sessions is key to how we handle and store data in ARE; they are the root
containers of datasets. A session represents an activity bounded in time and space and stores
the information about the context of the activity, and the data generated during that activity.
When a session is saved, it becomes immutable and is assigned a unique identifier. This
allow sessions to be based on previous sessions, and enables traceability and reproducibility as
analysed information is referenced to the session where the data for that analysis was stored.
It also allows referencing of large files, such as high-quality video captures during an activity,
without duplicating the files.

AutoActiveZip File

An AutoActiveZip (aaz) file is an uncompressed zip archive that contains a set of sessions. All
information inside the archive is organized into directories like a file system. By using the ZIP
archive file format, we can store multiple datasets in a single file, store necessary metadata to
describe the data, but most importantly we can compress data in a binary format suitable for
different data types. In ARE sensor data is stored in parquet files, while videos are stored in
their original format, as they are already compressed. By using the parquet format instead
of a common data format such as csv we reduce storage requirements on larger files. The
necessary metadata is stored in a json file within the archive. An example of the structure of
an aaz-file can be seen in Figure 3 where a file named “GoPro_openpifpaf.aaz” is described.
An aaz file can contain one to many sessions, in this case there is only one session. The session
is identified with a uuid4 number, “a9ee0260-c8c6-4f87-b00c-bb25a7772885” and is just a
folder. Inside the session folder two more folders exist, a folder named “data” and a folder
named “video”, and a json file named “AUTOACTIVE_SESSION.json”. The purpose of the
json file is to store necessary metadata. The folder named data contains a parquet file named
“video_features.3ded455b-6567-440f-8f87-effc6549ed05”. The other folder contains a video
named “GoPro1_inne.d84020b3-f047-4026-96df-51ce987d747e”. Although the folders only
contain one file in the example, a folder can potentially contain multiple different files.

Albrektsen et al. (2022). The AutoActive Research Environment. Journal of Open Source Software, 7(72), 4061. https://doi.org/10.21105/
joss.04061.

3

https://doi.org/10.21105/joss.04061
https://doi.org/10.21105/joss.04061


Figure 3: Structure of the AutoActive Zip file

Json file

Each session in an aaz file contains a root json file which contains important metadata used
when reading data from the aaz file into native C#, Matlab and Python classes. An example
of the structure of a json file can be seen in Figure 4. The json file corresponds to the zip file
in Figure 3. Each part of the json file contains a meta field and a user field. The meta field
contains only data not presented to the user, while the user field contains metadata visible
and editable by user or nested datasets in the form of other data objects. The first meta field
seen in Figure 4 describes the session object while the user field contains another folder named
“Data” where the data-table and video is defined.

Figure 4: Structure of the json file inside the aaz file

Matlab and Python toolboxes
The Matlab and Python toolboxes consist of a reader and writer class which reads and writes
AutoActiveZip files. The Matlab toolbox also consists of classes which makes it easy to
create aaz dataobjects directly from e.g. Physiolog 5 and tcx files from Garmin. Furthermore,
the libraries consist of a set of classes storing sensor data and videos. The data classes all
inherit from the dataobject class. The dataobject class specifies all transformations needed

Albrektsen et al. (2022). The AutoActive Research Environment. Journal of Open Source Software, 7(72), 4061. https://doi.org/10.21105/
joss.04061.

4

https://doi.org/10.21105/joss.04061
https://doi.org/10.21105/joss.04061


for converting the native Matlab and Python formats to and from the AutoActiveZip file. All
dataobject sub-classes in Matlab and Python are identified by a type string. The type string is
also stored in the AutoActiveZip File in the json file and can be seen in the meta sections in
Figure 4. This makes it possible to load a session from the AutoActiveZip into specific data
classes.

Acknowledgements
The AutoActive Research platform was developed at SINTEF as a part of the AutoActive,
project financed by the Norwegian Research Council (no. 270791), with support from the
SILENSE ARTEMIS project (no. 737487) and internal funding.

References
Martinez, R., Michaud, B., & Begon, M. (2020). ‘Pyomeca‘: An open-source framework for

biomechanical analysis. Journal of Open Source Software, 5(53), 2431. https://doi.org/
10.21105/joss.02431

Musmann, F., Sasso, A., & Arnrich, B. (2020). ALPS: A web platform for analysing multimodal
sensor data in the context of digital health. 2020 IEEE International Conference on
Healthcare Informatics (ICHI), 1–12. https://doi.org/10.1109/ICHI48887.2020.9374371

scientific, P. (cited Jan 2022). PASCO capstone software. https://www.pasco.com/products/
software/capstonea

SensiML. (cited Jan 2022). SensiML analytics toolkit. https://sensiml.com/

Albrektsen et al. (2022). The AutoActive Research Environment. Journal of Open Source Software, 7(72), 4061. https://doi.org/10.21105/
joss.04061.

5

https://doi.org/10.21105/joss.02431
https://doi.org/10.21105/joss.02431
https://doi.org/10.1109/ICHI48887.2020.9374371
https://www.pasco.com/products/software/capstonea
https://www.pasco.com/products/software/capstonea
https://sensiml.com/
https://doi.org/10.21105/joss.04061
https://doi.org/10.21105/joss.04061

	Statement of Need
	Summary
	Overview of the AutoActive Research Environment
	ActivityPresenter
	Data Handling
	Session
	AutoActiveZip File
	Json file

	Matlab and Python toolboxes

	Acknowledgements
	References

