
Elephas: Distributed Deep Learning with Keras &
Spark
Max Pumperla1,2 and Daniel Cahall3

1 IU Internationale Hochschule, Erfurt, Germany 2 Anyscale Inc, San Francisco, USA 3 Independent
researcher, Philadelphia, USA

DOI: 10.21105/joss.04073

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @sepandhaghighi
• @nmoran

Submitted: 18 November 2021
Published: 15 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Elephas is an extension of Keras, which allows you to run distributed deep learning models at
scale with Apache Spark. It was built to allow researchers and developers to distribute their
deep learning experiments as easily as possible on a Spark computer cluster. With elephas,
researchers can currently run data-parallel training of deep learning models with distribution
modes as suggested in (Dean et al., 2012), (Recht et al., 2011) and (Noel & Osindero, 2014).
Additionally, elephas supports distributed training of ensemble models. Until version 2.1.,
elephas also supported distributed hyper-parameter optimization of Keras models.

Elephas keeps the simplicity and high usability of Keras, thereby allowing for fast prototyping of
distributed models. When ready, researchers can then scale out their experiments on massive
data sets. Elephas comes with full API documentation and examples to get you started.
Initiated in late 2015, elephas has been actively maintained since then and has reached maturity
for distributed deep learning on Spark.

Statement of need
Modern deep learning solutions require ever more data and computation power. A study by
OpenAI suggests that the number of operations needed for AI systems, by now measured in
petaflops, shows exponential growth and has in fact been doubling every 3.4 months since
2012. This vastly outweighs the computational gains to expect from single machines, even
according to the most optimistic version of Moore’s law. There’s a clear need for solutions
that can scale to compute clusters. While some large companies have such large deep learning
models that they have to resort to distributing the models themselves (model-parallelism),
for most researchers and the majority of companies, compute time and data volume are the
predominant bottlenecks.

Apache Spark has established itself as one of the most popular platforms for distributed
computing. However, its native machine learning (ML) capabilities are limited by design.
Spark excels when transforming massive datasets and applying built-in ML algorithms with
Spark MLlib, but does not support implementation of custom algorithms with deep learning
frameworks such as Google’s TensorFlow and specifically its convenient Keras API.

Elephas was the first open-source framework to support distributed training with Keras on
Spark. It was followed by libraries such as Yahoo’s TensorFlowOnSpark, which does not follow
Keras API design principles, later on. In recent years, other popular distributed deep learning
frameworks have emerged, such as the powerful Horovod (Sergeev & Balso, 2018), which
initially did not have Spark support. BigDL (Dai et al., 2019) is another such framework worth
mentioning, especially in conjunction with Intel’s Analytics Zoo. Elephas is still in active use
and has been leveraged by millions of users in the Python deep learning community.

Pumperla, & Cahall. (2022). Elephas: Distributed Deep Learning with Keras & Spark. Journal of Open Source Software, 7(80), 4073.
https://doi.org/10.21105/joss.04073.

1

https://doi.org/10.21105/joss.04073
https://github.com/openjournals/joss-reviews/issues/4073
https://github.com/danielenricocahall/elephas
https://doi.org/10.5281/zenodo.7435012
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/sepandhaghighi
https://github.com/nmoran
https://creativecommons.org/licenses/by/4.0/
https://keras.io/
http://spark.apache.org/
https://danielenricocahall.github.io/elephas/
https://github.com/danielenricocahall/elephas/blob/master/examples/Spark_ML_Pipeline.ipynb
https://openai.com/blog/ai-and-compute
http://spark.apache.org/mllib/
https://www.tensorflow.org/
https://github.com/yahoo/TensorFlowOnSpark
https://github.com/intel-analytics/analytics-zoo
https://pypistats.org/packages/elephas
https://doi.org/10.21105/joss.04073

Design and API
Elephas has a tight integration with many of Spark’s core abstraction layers. Apart from the
basic integration for Spark’s resilient distributed datasets (RDDs), elephas works with MLlib
models, with Spark ML estimators, can train ensemble models and run distributed inference.

Basic Spark training
Elephas’ core abstraction to bring Keras models to Spark is called SparkModel. To use it, you
define a Keras model, load your data, define your SparkModel with the training mode and
update frequency of your choice, and then fit your model on distributed data:

from elephas.spark_model import SparkModel

from elephas.utils.rdd_utils import to_simple_rdd

from pyspark import SparkContext, SparkConf

from tensorflow.keras.models import Sequential

Define Spark context

conf = SparkConf().setAppName('Elephas_App')\

.setMaster('local[8]')

sc = SparkContext(conf=conf)

Define Keras model

model = Sequential()

model.add(...)

model.compile(...)

Load training data

x_train, y_train = ...

Convert to Spark RDD

rdd = to_simple_rdd(sc, x_train, y_train)

Define Elephas model

spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')

Run distributed training

spark_model.fit(rdd, ...)

Afterwards your training job can be submitted to any Spark cluster like this:

spark-submit --driver-memory 1G ./your_script.py

Distributed Inference
When your model spark_model has finished training, you can easily run distributed inference
on your test data or compute evaluation metrics on it as follows.

Load test data

x_test, y_test = ...

Perform distributed inference

predictions = spark_model.predict(x_test)

Run distributed evaluation/scoring

evaluation = spark_model.evaluate(x_test, y_test)

Pumperla, & Cahall. (2022). Elephas: Distributed Deep Learning with Keras & Spark. Journal of Open Source Software, 7(80), 4073.
https://doi.org/10.21105/joss.04073.

2

https://doi.org/10.21105/joss.04073

Spark MLlib and ML integrations
To leverage Spark’s LabeledPoint RDD to encode features and labels for a prediction task,
you can use helper functions provided by elephas and then train a so-called SparkMLlibModel

on your data for your Keras model.

from elephas.utils.rdd_utils import to_labeled_point

from elephas.spark_model import SparkMLlibModel

Create a LabeledPoint RDD

lp_rdd = to_labeled_point(sc, x_train, y_train, categorical=True)

Define and train a SparkMLlib model

spark_model = SparkMLlibModel(model, frequency='batch', mode='hogwild')

spark_model.train(lp_rdd, ...)

Likewise, to create a Spark ML Estimator to fit it on a Spark DataFrame, you can use elephas’
s SparkEstimator.

from elephas.ml.adapter import to_data_frame

from elephas.ml_model import ElephasEstimator

Create a Spark DataFrame

df = to_data_frame(sc, x_train, y_train, categorical=True)

Define and fit an Elephas Estimator

estimator = ElephasEstimator(model, ...)

fitted_model = estimator.fit(df)

To summarize, elephas provides you with training and evaluation support for custom Keras
models for many practical scenarios and data structures supported on a Spark cluster.

Acknowledgements
We would like to thank all the open-source contributors that helped making elephas what it
is today.

References
Dai, J. (Jinquan)., Wang, Y., Qiu, X., Ding, D., Zhang, Y., Wang, Y., Jia, X., Zhang, L.

(Cherry)., Wan, Y., Li, Z., Wang, J., Huang, S., Wu, Z., Wang, Y., Yang, Y., She, B.,
Shi, D., Lu, Q., Huang, K., & Song, G. (2019). BigDL: A distributed deep learning
framework for big data. Proceedings of the ACM Symposium on Cloud Computing, 50–60.
https://doi.org/10.1145/3357223.3362707

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A.,
Tucker, P., Yang, K., Le, Q., & Ng, A. (2012). Large scale distributed deep networks. In
F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural
information processing systems (Vol. 25). Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

Noel, C., & Osindero, S. (2014). Dogwild! – distributed hogwild for CPU & GPU.

Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild!: A lock-free approach to par-
allelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F.
Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems

Pumperla, & Cahall. (2022). Elephas: Distributed Deep Learning with Keras & Spark. Journal of Open Source Software, 7(80), 4073.
https://doi.org/10.21105/joss.04073.

3

https://doi.org/10.1145/3357223.3362707
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://doi.org/10.21105/joss.04073

(Vol. 24). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2011/file/
218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf

Sergeev, A., & Balso, M. D. (2018). Horovod: Fast and easy distributed deep learning in
TensorFlow. arXiv Preprint arXiv:1802.05799.

Pumperla, & Cahall. (2022). Elephas: Distributed Deep Learning with Keras & Spark. Journal of Open Source Software, 7(80), 4073.
https://doi.org/10.21105/joss.04073.

4

https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://doi.org/10.21105/joss.04073

	Summary
	Statement of need
	Design and API
	Basic Spark training
	Distributed Inference
	Spark MLlib and ML integrations

	Acknowledgements
	References

