
PyNumDiff: A Python package for numerical
differentiation of noisy time-series data
Floris Van Breugel1¶, Yuying Liu2, Bingni W. Brunton3, and J. Nathan
Kutz2

1 Department of Mechanical Engineering, University of Nevada at Reno 2 Department of Applied
Mathematics, University of Washington 3 Department of Biology, University of Washington ¶
Corresponding author

DOI: 10.21105/joss.04078

Software
• Review
• Repository
• Archive

Editor: Christina Hedges
Reviewers:

• @pmli
• @billtubbs

Submitted: 15 November 2021
Published: 22 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Statement of need
The numerical computation of derivatives is ubiquitous in every scientific discipline and
engineering application because derivatives express fundamental relationships among many
quantities of interest. As a result, a large number of diverse algorithms have been developed to
differentiate numerical data. These efforts are challenging because, in reality, practitioners often
have sparse and noisy measurements and data, which undermine the ability to estimate accurate
derivatives. Among the diversity of mathematical approaches that have been formulated, many
are ad hoc in nature and require significant bespoke tuning of multiple parameters to produce
reasonable results. Thus, at a practical level, it is often unclear which method should be used,
how to choose parameters, and how to compare results from different methods.

Regardless of application domain, scientists of various levels of mathematical expertise would
benefit from a unified toolbox for differentiation techniques and parameter tuning. To address
these needs, we built the open-source package PyNumDiff, with two primary goals in mind: (1)
to develop a unified source for a diversity of differentiation methods using a common API, and
(2) to provide an objective approach for choosing optimal parameters with a single universal
hyperparameter (gamma) that functions similarly for all differentiation methods (Van Breugel
et al., 2020). By filling these needs, PyNumdiff facilitates easy computations of derivatives on
diverse time-series data sets.

State of the field
Currently, practitioners in need of numerical differentiation tools must often implement a
number of methods themselves, before selecting one that is appropriate for their application.
High-quality data can leverage computationally efficient and algorithmically simple methods
such as the finite-difference, as implemented by standard packages such as NumPy (Harris et
al., 2020), SciPy (Jones et al., 2001; Virtanen et al., 2020), or specialized packages like findiff
(Baer & others, 2018). Data that are sparse and noisy, however, require more sophisticated
algorithms that pracitioners must build themselves based on routines implemented across
modules found in disparate packages such as SciPy, PyKalman (Duckworth & others, 2012),
PyDMD (Demo et al., 2018), or stand alone scripts such as these implementations of total
variation regularization (Chartrand, 2011; Rudin et al., 1992). At present, there is no centralized
repository that offers a diverse range of vetted numerical differentiation tools under a unified
API in Python, or other software languages.
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Summary
PyNumDiff is a Python package that implements methods for computing numerical derivatives
of noisy data. In this package, we implement four commonly used families of differentiation
methods whose mathematical formulations have different underlying assumptions, including
both global and local methods (Ahnert & Abel, 2007). The first family of methods usually
start by applying a smoothing filter to the data, followed by a finite difference calculation
(Butterworth, 1930). The second family relies on building a local model of the data through
linear regression, and then analytically calculating the derivative based on the model (Belytschko
et al., 1996; Savitzky & Golay, 1964; Schafer, 2011). The third family we consider is the
Kalman filter (Aravkin et al., 2017; Crassidis & Junkins, 2004; Henderson, 2001; Kalman,
1960), with unknown noise and process characteristics. The last family is an optimization
approach based on total variation regularization (TVR) method (Chartrand, 2011; Rudin et
al., 1992). For more technical details, refer to Van Breugel et al. (2020). Individual methods
under each family are accessed through the API as pynumdiff.family.method.

Applying PyNumDiff usually takes three steps: (i) pick a differentiation method, (ii) obtain
optimized parameters, and (iii) apply the differentiation. Step (ii) can be skipped if one
wants to manually assign the parameters, which is recommended when computation time
is limited and the timeseries is long. Alternatively for long timeseries, optimal parameters
can be chosen using a short but representative subset of the data. This optimization routine
is provided as a sub-module (pynumdiff.optimize) with the same structure of differentiation
families (i.e. pynumdiff.optimize.family.method). By default, the package performs the
optimization using the open source CVXOPT package. Faster solutions can be achieved by
using proprietary solvers such as MOSEK.

The software package includes tutorials in the form of Jupyter notebooks. These tutorials
demonstrate the usage of the aforementioned features. For more detailed information, there is
a more comprehensive Sphinx documentation associated with the repository.
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